关于使用Mxnet GPU版本运行DeepAR报错解决方案

1.引言

我们经常使用GPU来训练和部署神经网络,因为与CPU相比,它提供了更多的计算能力。在本教程中,我们将介绍如何将GPU与MXNet GluonTS一起使用。

首先,确保您的机器中至少有一个Nvidia GPU,并正确安装了CUDA以及CUDNN。但是在引入import mxnet后出现下面的问题:

MXNet的OSError: libnccl.so.2: cannot open shared object file: No such file or directory

本文将会解决这一问题,亲测好用。

2.博主服务器配置

  • Ubuntu 18.04
  • cuda11.3
  • cudnn 8.2.1

3.安装

(1)首先安装mxnet gpu版本,根据自己的cuda版本,如果是10.0那么就是mxnet-cu100以此类推。

python 复制代码
pip install mxnet-cu113

(2)安装gluonts.

python 复制代码
pip install gluonts

4.解决问题

(1)去 NVIDIA 官网下载(Log in | NVIDIA Developer)跟你 CUDA 版本和操作系统(我的是Ubuntu18.04)适配的 NCCL 文件

(2) 配置下载的deb文件

python 复制代码
sudo dpkg -i nccl-local-repo-ubuntu1804-2.9.9-cuda11.3_1.0-1_amd64.deb
sudo apt update
sudo apt install libnccl2=2.9.9-1+cuda11.3 libnccl-dev=2.9.9-1+cuda11.3

(3)你可以检查你的mxnet当前版本,以及可用的GPU数目:

python 复制代码
import mxnet as mx
print(f'Number of GPUs: {mx.context.num_gpus()}')

然后就解决了,可以利用 GPU 跑 MXNet GluonTS 的深度学习模型做时间序列预测项目。

(3)指定第四块GPU卡参与训练(它应该自动检测GPU,但你可以强制它)

python 复制代码
trainer=Trainer(
        ctx=mxnet.context.gpu(3),
        epochs=train_conf.max_epochs,
        num_batches_per_epoch=train_conf.num_batches_per_epoch,
    )

从下面的图可以看出,指定了第四块卡训练,显存得到占用。

相关推荐
翱翔的苍鹰1 小时前
多Agent智能体架构设计思路
人工智能·pytorch·python
Liue612312311 小时前
【AI计算机视觉】YOLOv26硬币检测与识别系统,高效准确识别各类硬币,代码与模型全开源,不容错过_2
人工智能·yolo·计算机视觉
Faker66363aaa2 小时前
航空基地设施目标检测 - YOLOv26实现战斗机机库非作战飞机旋翼飞机自动识别定位
人工智能·yolo·目标检测
Lun3866buzha2 小时前
Bundaberg Rum 700mL酒瓶检测实战:基于YOLOv26的高精度识别方案
人工智能·yolo·目标跟踪
Σίσυφος19002 小时前
OpenCV - SVM算法
人工智能·opencv·算法
落雨盛夏4 小时前
深度学习|李哥考研4图片分类比较详细说明
人工智能·深度学习·分类
臭东西的学习笔记8 小时前
论文学习——机器学习引导的蛋白质工程
人工智能·学习·机器学习
大王小生8 小时前
说说CSV文件和C#解析csv文件的几种方式
人工智能·c#·csv·csvhelper·csvreader
m0_462605228 小时前
第G3周:CGAN入门|生成手势图像
人工智能
bubiyoushang8889 小时前
基于LSTM神经网络的短期风速预测实现方案
人工智能·神经网络·lstm