关于使用Mxnet GPU版本运行DeepAR报错解决方案

1.引言

我们经常使用GPU来训练和部署神经网络,因为与CPU相比,它提供了更多的计算能力。在本教程中,我们将介绍如何将GPU与MXNet GluonTS一起使用。

首先,确保您的机器中至少有一个Nvidia GPU,并正确安装了CUDA以及CUDNN。但是在引入import mxnet后出现下面的问题:

MXNet的OSError: libnccl.so.2: cannot open shared object file: No such file or directory

本文将会解决这一问题,亲测好用。

2.博主服务器配置

  • Ubuntu 18.04
  • cuda11.3
  • cudnn 8.2.1

3.安装

(1)首先安装mxnet gpu版本,根据自己的cuda版本,如果是10.0那么就是mxnet-cu100以此类推。

python 复制代码
pip install mxnet-cu113

(2)安装gluonts.

python 复制代码
pip install gluonts

4.解决问题

(1)去 NVIDIA 官网下载(Log in | NVIDIA Developer)跟你 CUDA 版本和操作系统(我的是Ubuntu18.04)适配的 NCCL 文件

(2) 配置下载的deb文件

python 复制代码
sudo dpkg -i nccl-local-repo-ubuntu1804-2.9.9-cuda11.3_1.0-1_amd64.deb
sudo apt update
sudo apt install libnccl2=2.9.9-1+cuda11.3 libnccl-dev=2.9.9-1+cuda11.3

(3)你可以检查你的mxnet当前版本,以及可用的GPU数目:

python 复制代码
import mxnet as mx
print(f'Number of GPUs: {mx.context.num_gpus()}')

然后就解决了,可以利用 GPU 跑 MXNet GluonTS 的深度学习模型做时间序列预测项目。

(3)指定第四块GPU卡参与训练(它应该自动检测GPU,但你可以强制它)

python 复制代码
trainer=Trainer(
        ctx=mxnet.context.gpu(3),
        epochs=train_conf.max_epochs,
        num_batches_per_epoch=train_conf.num_batches_per_epoch,
    )

从下面的图可以看出,指定了第四块卡训练,显存得到占用。

相关推荐
珠海西格电力3 小时前
零碳园区有哪些政策支持?
大数据·数据库·人工智能·物联网·能源
じ☆冷颜〃3 小时前
黎曼几何驱动的算法与系统设计:理论、实践与跨领域应用
笔记·python·深度学习·网络协议·算法·机器学习
启途AI3 小时前
2026免费好用的AIPPT工具榜:智能演示文稿制作新纪元
人工智能·powerpoint·ppt
TH_13 小时前
35、AI自动化技术与职业变革探讨
运维·人工智能·自动化
楚来客3 小时前
AI基础概念之八:Transformer算法通俗解析
人工智能·算法·transformer
风送雨3 小时前
FastMCP 2.0 服务端开发教学文档(下)
服务器·前端·网络·人工智能·python·ai
效率客栈老秦4 小时前
Python Trae提示词开发实战(8):数据采集与清洗一体化方案让效率提升10倍
人工智能·python·ai·提示词·trae
小和尚同志4 小时前
虽然 V0 很强大,但是ScreenshotToCode 依旧有市场
人工智能·aigc
HyperAI超神经4 小时前
【vLLM 学习】Rlhf
人工智能·深度学习·学习·机器学习·vllm
芯盾时代4 小时前
石油化工行业网络风险解决方案
网络·人工智能·信息安全