关于使用Mxnet GPU版本运行DeepAR报错解决方案

1.引言

我们经常使用GPU来训练和部署神经网络,因为与CPU相比,它提供了更多的计算能力。在本教程中,我们将介绍如何将GPU与MXNet GluonTS一起使用。

首先,确保您的机器中至少有一个Nvidia GPU,并正确安装了CUDA以及CUDNN。但是在引入import mxnet后出现下面的问题:

MXNet的OSError: libnccl.so.2: cannot open shared object file: No such file or directory

本文将会解决这一问题,亲测好用。

2.博主服务器配置

  • Ubuntu 18.04
  • cuda11.3
  • cudnn 8.2.1

3.安装

(1)首先安装mxnet gpu版本,根据自己的cuda版本,如果是10.0那么就是mxnet-cu100以此类推。

python 复制代码
pip install mxnet-cu113

(2)安装gluonts.

python 复制代码
pip install gluonts

4.解决问题

(1)去 NVIDIA 官网下载(Log in | NVIDIA Developer)跟你 CUDA 版本和操作系统(我的是Ubuntu18.04)适配的 NCCL 文件

(2) 配置下载的deb文件

python 复制代码
sudo dpkg -i nccl-local-repo-ubuntu1804-2.9.9-cuda11.3_1.0-1_amd64.deb
sudo apt update
sudo apt install libnccl2=2.9.9-1+cuda11.3 libnccl-dev=2.9.9-1+cuda11.3

(3)你可以检查你的mxnet当前版本,以及可用的GPU数目:

python 复制代码
import mxnet as mx
print(f'Number of GPUs: {mx.context.num_gpus()}')

然后就解决了,可以利用 GPU 跑 MXNet GluonTS 的深度学习模型做时间序列预测项目。

(3)指定第四块GPU卡参与训练(它应该自动检测GPU,但你可以强制它)

python 复制代码
trainer=Trainer(
        ctx=mxnet.context.gpu(3),
        epochs=train_conf.max_epochs,
        num_batches_per_epoch=train_conf.num_batches_per_epoch,
    )

从下面的图可以看出,指定了第四块卡训练,显存得到占用。

相关推荐
大江东去浪淘尽千古风流人物15 小时前
【DSP】xiBoxFilter_3x3_U8 dsp VS cmodel
linux·运维·人工智能·算法·vr
超级小龙虾15 小时前
Augment Context Engine MCP
人工智能
行业探路者15 小时前
健康宣教二维码是什么?主要有哪些创新优势?
人工智能·学习·音视频·二维码·产品介绍
灏瀚星空15 小时前
基于 Python 与 GitHub,打造个人专属本地化思维导图工具全流程方案(上)
开发语言·人工智能·经验分享·笔记·python·个人开发·visual studio
xcLeigh15 小时前
AI的提示词专栏:Prompt 与 Python Pandas 的结合使用指南
人工智能·python·ai·prompt·提示词
羽小暮15 小时前
Yolo11环境配置win+Python+Anaconda--小白目标检测学习专用(超详细)
人工智能·yolo·目标检测
草莓熊Lotso15 小时前
Python 入门超详细指南:环境搭建 + 核心优势 + 应用场景(零基础友好)
运维·开发语言·人工智能·python·深度学习·学习·pycharm
xwill*15 小时前
python 格式化输出详解(占位符:%、format、f表达式
开发语言·pytorch·python·深度学习
雪寻梅*15 小时前
(深度学习)python+yolov11训练自己的数据集
人工智能·python·深度学习·yolo
tq108615 小时前
AI 重塑三层双链:从金字塔结构到人智协同网络
人工智能