关于使用Mxnet GPU版本运行DeepAR报错解决方案

1.引言

我们经常使用GPU来训练和部署神经网络,因为与CPU相比,它提供了更多的计算能力。在本教程中,我们将介绍如何将GPU与MXNet GluonTS一起使用。

首先,确保您的机器中至少有一个Nvidia GPU,并正确安装了CUDA以及CUDNN。但是在引入import mxnet后出现下面的问题:

MXNet的OSError: libnccl.so.2: cannot open shared object file: No such file or directory

本文将会解决这一问题,亲测好用。

2.博主服务器配置

  • Ubuntu 18.04
  • cuda11.3
  • cudnn 8.2.1

3.安装

(1)首先安装mxnet gpu版本,根据自己的cuda版本,如果是10.0那么就是mxnet-cu100以此类推。

python 复制代码
pip install mxnet-cu113

(2)安装gluonts.

python 复制代码
pip install gluonts

4.解决问题

(1)去 NVIDIA 官网下载(Log in | NVIDIA Developer)跟你 CUDA 版本和操作系统(我的是Ubuntu18.04)适配的 NCCL 文件

(2) 配置下载的deb文件

python 复制代码
sudo dpkg -i nccl-local-repo-ubuntu1804-2.9.9-cuda11.3_1.0-1_amd64.deb
sudo apt update
sudo apt install libnccl2=2.9.9-1+cuda11.3 libnccl-dev=2.9.9-1+cuda11.3

(3)你可以检查你的mxnet当前版本,以及可用的GPU数目:

python 复制代码
import mxnet as mx
print(f'Number of GPUs: {mx.context.num_gpus()}')

然后就解决了,可以利用 GPU 跑 MXNet GluonTS 的深度学习模型做时间序列预测项目。

(3)指定第四块GPU卡参与训练(它应该自动检测GPU,但你可以强制它)

python 复制代码
trainer=Trainer(
        ctx=mxnet.context.gpu(3),
        epochs=train_conf.max_epochs,
        num_batches_per_epoch=train_conf.num_batches_per_epoch,
    )

从下面的图可以看出,指定了第四块卡训练,显存得到占用。

相关推荐
d0ublεU0x0015 小时前
注意力机制与transformer
人工智能·深度学习·transformer
凤希AI伴侣15 小时前
凤希AI提出:FXPA2P - 当P2P技术遇上AI,重新定义数据与服务的边界
人工智能·凤希ai伴侣
腾迹15 小时前
2026年企业微信SCRM系统服务推荐:微盛·企微管家的AI私域增长方案
大数据·人工智能
寰宇视讯15 小时前
脑科技走进日常 消费级应用开启新蓝海,安全与普惠成关键
人工智能·科技·安全
云卓SKYDROID15 小时前
无人机电机模块选型与技术要点
人工智能·无人机·遥控器·高科技·云卓科技
小酒星小杜15 小时前
在AI时代,技术人应该每天都要花两小时来构建一个自身的构建系统 - 总结篇
前端·vue.js·人工智能
云卓SKYDROID15 小时前
无人机螺旋桨材料与技术解析
人工智能·无人机·高科技·云卓科技·技术解析、
智驱力人工智能15 小时前
矿山皮带锚杆等异物识别 从事故预防到智慧矿山的工程实践 锚杆检测 矿山皮带铁丝异物AI预警系统 工厂皮带木桩异物实时预警技术
人工智能·算法·安全·yolo·目标检测·计算机视觉·边缘计算
运维@小兵15 小时前
Spring AI入门
java·人工智能·spring
Python_Study202515 小时前
制造业企业如何构建高效数据采集系统:从挑战到实践
大数据·网络·数据结构·人工智能·架构