Python嵌套绘图并为条形图添加自定义标注

论文绘图时经常需要多图嵌套,正好最近绘图用到了,记录一下使用Python实现多图嵌套的过程。

首先,实现 Seaborn 分别绘制折线图和柱状图。

python 复制代码
'''绘制折线图'''
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore", "use_inf_as_na")

# 获取绘图数据
df_fmri=sns.load_dataset("fmri")
# 绘制折线图
sns.lineplot(data=df_fmri, x="timepoint", y="signal", hue="event")

# 创建绘图数据
df_bar=df_fmri[['subject','signal']].groupby('subject',observed=True).agg('max').reset_index()
# 绘制条形图
ax_bar=sns.barplot(
    data=df_bar,
    x="subject", y="signal",
    palette='Set2',
)

接下来实现条形图与折线图的嵌套,核心是使用 inset_axes 函数创建一个新的轴,然后再绘制第二个图时指定绘图的轴为刚才新建的轴。

python 复制代码
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
import matplotlib.pyplot as plt

# 获取绘图数据
df_fmri = sns.load_dataset("fmri")
df_bar=df_fmri[['subject','signal']].groupby('subject',observed=True).agg('max').reset_index()

# 绘制折线图
ax=sns.lineplot(data=df_fmri, x="timepoint", y="signal", hue="event")
plt.legend(loc='upper left')

# 使用 inset_axes 函数添加一个轴,用来显示条形图
ax_bar = inset_axes(
    ax, # 父轴
    width='40%', height='50%', # 新轴相对于父轴的长宽比例
    loc='lower left', # 新轴的锚点相对于父轴的位置
    bbox_to_anchor=(0.55,0.45,1,1), # 新轴的bbox
    bbox_transform=ax.transAxes # bbox_to_anchor 的坐标基准
    )
# 绘制条形图
ax_bar=sns.barplot(
    data=df_bar,
    x="subject", y="signal", 
    palette='Set2',
    ax=ax_bar
)

可以看到,右上角的条形图显得很拥挤,x轴标注相互重叠比较严重,因此,考虑将条形图由纵向变为横向,在 Seaborn 绘图时交换 x 轴和 y 轴就能实现。此外,bar上方的空间也比较大,考虑将x轴的标注标注到bar上方,以进一步节约空间。bar的标注可以通过 ax.bar_label() 函数实现,该函数不仅可以直接标注每个bar的数值,也可以自定义要标注的内容和格式。修改后的代码和结果图如下:

python 复制代码
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
import matplotlib.pyplot as plt

# 准备数据
df_fmri = sns.load_dataset("fmri")
df_bar=df_fmri[['subject','signal']].groupby('subject',observed=True).agg('max').reset_index()

# 绘制折线图
ax=sns.lineplot(data=df_fmri, x="timepoint", y="signal", hue="event")
plt.legend(loc='upper left')

# 使用 inset_axes 函数添加一个轴,用来显示条形图
ax_bar = inset_axes(
    ax, # 父轴
    width='47%', height='52%', # 新轴相对于父轴的长宽比例
    loc='lower left', # 新轴的锚点相对于父轴的位置
    bbox_to_anchor=(0.5,0.44,1,1), # 新轴的bbox
    bbox_transform=ax.transAxes # bbox_to_anchor 的坐标基准
    )
# 绘制条形图
ax_bar=sns.barplot(
    data=df_bar,
    # 交换 x 轴和 y 轴列名实现横向条形图
    x="signal", y="subject", 
    palette='Set2',
    ax=ax_bar
)
# 使用 sns 的 bar_label 函数为条形图添加标注
ax_bar.bar_label(
    ax_bar.containers[0], # 条形图的 BarContainer 对象
    labels=df_bar['subject'], # 要标注的labels,默认为 bar 的数值,此处传入自定义的label序列
    label_type='edge', # 标注显示的位置,可选 edge 或 center
    padding=2, # 标注与bar之间的距离
    # fmt='%.2f' # 标注格式化字符串
    fontsize=10 # 设置标注的字体大小
    )
# 为了避免标注超出绘图范围,将x轴的绘图范围扩大
plt.xlim(0,0.62)
# 隐藏左侧y轴
ax_bar.yaxis.set_visible(False)
# 去除多余的轴线
sns.despine()

打完收工!

相关推荐
蓝天星空1 分钟前
Python调用open ai接口
人工智能·python
jasmine s10 分钟前
Pandas
开发语言·python
郭wes代码10 分钟前
Cmd命令大全(万字详细版)
python·算法·小程序
leaf_leaves_leaf28 分钟前
win11用一条命令给anaconda环境安装GPU版本pytorch,并检查是否为GPU版本
人工智能·pytorch·python
夜雨飘零133 分钟前
基于Pytorch实现的说话人日志(说话人分离)
人工智能·pytorch·python·声纹识别·说话人分离·说话人日志
404NooFound40 分钟前
Python轻量级NoSQL数据库TinyDB
开发语言·python·nosql
天天要nx1 小时前
D102【python 接口自动化学习】- pytest进阶之fixture用法
python·pytest
minstbe1 小时前
AI开发:使用支持向量机(SVM)进行文本情感分析训练 - Python
人工智能·python·支持向量机
落魄实习生1 小时前
AI应用-本地模型实现AI生成PPT(简易版)
python·ai·vue·ppt
苏言の狗1 小时前
Pytorch中关于Tensor的操作
人工智能·pytorch·python·深度学习·机器学习