Python嵌套绘图并为条形图添加自定义标注

论文绘图时经常需要多图嵌套,正好最近绘图用到了,记录一下使用Python实现多图嵌套的过程。

首先,实现 Seaborn 分别绘制折线图和柱状图。

python 复制代码
'''绘制折线图'''
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore", "use_inf_as_na")

# 获取绘图数据
df_fmri=sns.load_dataset("fmri")
# 绘制折线图
sns.lineplot(data=df_fmri, x="timepoint", y="signal", hue="event")

# 创建绘图数据
df_bar=df_fmri[['subject','signal']].groupby('subject',observed=True).agg('max').reset_index()
# 绘制条形图
ax_bar=sns.barplot(
    data=df_bar,
    x="subject", y="signal",
    palette='Set2',
)

接下来实现条形图与折线图的嵌套,核心是使用 inset_axes 函数创建一个新的轴,然后再绘制第二个图时指定绘图的轴为刚才新建的轴。

python 复制代码
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
import matplotlib.pyplot as plt

# 获取绘图数据
df_fmri = sns.load_dataset("fmri")
df_bar=df_fmri[['subject','signal']].groupby('subject',observed=True).agg('max').reset_index()

# 绘制折线图
ax=sns.lineplot(data=df_fmri, x="timepoint", y="signal", hue="event")
plt.legend(loc='upper left')

# 使用 inset_axes 函数添加一个轴,用来显示条形图
ax_bar = inset_axes(
    ax, # 父轴
    width='40%', height='50%', # 新轴相对于父轴的长宽比例
    loc='lower left', # 新轴的锚点相对于父轴的位置
    bbox_to_anchor=(0.55,0.45,1,1), # 新轴的bbox
    bbox_transform=ax.transAxes # bbox_to_anchor 的坐标基准
    )
# 绘制条形图
ax_bar=sns.barplot(
    data=df_bar,
    x="subject", y="signal", 
    palette='Set2',
    ax=ax_bar
)

可以看到,右上角的条形图显得很拥挤,x轴标注相互重叠比较严重,因此,考虑将条形图由纵向变为横向,在 Seaborn 绘图时交换 x 轴和 y 轴就能实现。此外,bar上方的空间也比较大,考虑将x轴的标注标注到bar上方,以进一步节约空间。bar的标注可以通过 ax.bar_label() 函数实现,该函数不仅可以直接标注每个bar的数值,也可以自定义要标注的内容和格式。修改后的代码和结果图如下:

python 复制代码
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
import matplotlib.pyplot as plt

# 准备数据
df_fmri = sns.load_dataset("fmri")
df_bar=df_fmri[['subject','signal']].groupby('subject',observed=True).agg('max').reset_index()

# 绘制折线图
ax=sns.lineplot(data=df_fmri, x="timepoint", y="signal", hue="event")
plt.legend(loc='upper left')

# 使用 inset_axes 函数添加一个轴,用来显示条形图
ax_bar = inset_axes(
    ax, # 父轴
    width='47%', height='52%', # 新轴相对于父轴的长宽比例
    loc='lower left', # 新轴的锚点相对于父轴的位置
    bbox_to_anchor=(0.5,0.44,1,1), # 新轴的bbox
    bbox_transform=ax.transAxes # bbox_to_anchor 的坐标基准
    )
# 绘制条形图
ax_bar=sns.barplot(
    data=df_bar,
    # 交换 x 轴和 y 轴列名实现横向条形图
    x="signal", y="subject", 
    palette='Set2',
    ax=ax_bar
)
# 使用 sns 的 bar_label 函数为条形图添加标注
ax_bar.bar_label(
    ax_bar.containers[0], # 条形图的 BarContainer 对象
    labels=df_bar['subject'], # 要标注的labels,默认为 bar 的数值,此处传入自定义的label序列
    label_type='edge', # 标注显示的位置,可选 edge 或 center
    padding=2, # 标注与bar之间的距离
    # fmt='%.2f' # 标注格式化字符串
    fontsize=10 # 设置标注的字体大小
    )
# 为了避免标注超出绘图范围,将x轴的绘图范围扩大
plt.xlim(0,0.62)
# 隐藏左侧y轴
ax_bar.yaxis.set_visible(False)
# 去除多余的轴线
sns.despine()

打完收工!

相关推荐
网易独家音乐人Mike Zhou2 小时前
【卡尔曼滤波】数据预测Prediction观测器的理论推导及应用 C语言、Python实现(Kalman Filter)
c语言·python·单片机·物联网·算法·嵌入式·iot
安静读书2 小时前
Python解析视频FPS(帧率)、分辨率信息
python·opencv·音视频
小二·3 小时前
java基础面试题笔记(基础篇)
java·笔记·python
小喵要摸鱼5 小时前
Python 神经网络项目常用语法
python
一念之坤6 小时前
零基础学Python之数据结构 -- 01篇
数据结构·python
wxl7812276 小时前
如何使用本地大模型做数据分析
python·数据挖掘·数据分析·代码解释器
NoneCoder6 小时前
Python入门(12)--数据处理
开发语言·python
LKID体7 小时前
Python操作neo4j库py2neo使用(一)
python·oracle·neo4j
小尤笔记8 小时前
利用Python编写简单登录系统
开发语言·python·数据分析·python基础
FreedomLeo18 小时前
Python数据分析NumPy和pandas(四十、Python 中的建模库statsmodels 和 scikit-learn)
python·机器学习·数据分析·scikit-learn·statsmodels·numpy和pandas