Python嵌套绘图并为条形图添加自定义标注

论文绘图时经常需要多图嵌套,正好最近绘图用到了,记录一下使用Python实现多图嵌套的过程。

首先,实现 Seaborn 分别绘制折线图和柱状图。

python 复制代码
'''绘制折线图'''
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore", "use_inf_as_na")

# 获取绘图数据
df_fmri=sns.load_dataset("fmri")
# 绘制折线图
sns.lineplot(data=df_fmri, x="timepoint", y="signal", hue="event")

# 创建绘图数据
df_bar=df_fmri[['subject','signal']].groupby('subject',observed=True).agg('max').reset_index()
# 绘制条形图
ax_bar=sns.barplot(
    data=df_bar,
    x="subject", y="signal",
    palette='Set2',
)

接下来实现条形图与折线图的嵌套,核心是使用 inset_axes 函数创建一个新的轴,然后再绘制第二个图时指定绘图的轴为刚才新建的轴。

python 复制代码
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
import matplotlib.pyplot as plt

# 获取绘图数据
df_fmri = sns.load_dataset("fmri")
df_bar=df_fmri[['subject','signal']].groupby('subject',observed=True).agg('max').reset_index()

# 绘制折线图
ax=sns.lineplot(data=df_fmri, x="timepoint", y="signal", hue="event")
plt.legend(loc='upper left')

# 使用 inset_axes 函数添加一个轴,用来显示条形图
ax_bar = inset_axes(
    ax, # 父轴
    width='40%', height='50%', # 新轴相对于父轴的长宽比例
    loc='lower left', # 新轴的锚点相对于父轴的位置
    bbox_to_anchor=(0.55,0.45,1,1), # 新轴的bbox
    bbox_transform=ax.transAxes # bbox_to_anchor 的坐标基准
    )
# 绘制条形图
ax_bar=sns.barplot(
    data=df_bar,
    x="subject", y="signal", 
    palette='Set2',
    ax=ax_bar
)

可以看到,右上角的条形图显得很拥挤,x轴标注相互重叠比较严重,因此,考虑将条形图由纵向变为横向,在 Seaborn 绘图时交换 x 轴和 y 轴就能实现。此外,bar上方的空间也比较大,考虑将x轴的标注标注到bar上方,以进一步节约空间。bar的标注可以通过 ax.bar_label() 函数实现,该函数不仅可以直接标注每个bar的数值,也可以自定义要标注的内容和格式。修改后的代码和结果图如下:

python 复制代码
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
import matplotlib.pyplot as plt

# 准备数据
df_fmri = sns.load_dataset("fmri")
df_bar=df_fmri[['subject','signal']].groupby('subject',observed=True).agg('max').reset_index()

# 绘制折线图
ax=sns.lineplot(data=df_fmri, x="timepoint", y="signal", hue="event")
plt.legend(loc='upper left')

# 使用 inset_axes 函数添加一个轴,用来显示条形图
ax_bar = inset_axes(
    ax, # 父轴
    width='47%', height='52%', # 新轴相对于父轴的长宽比例
    loc='lower left', # 新轴的锚点相对于父轴的位置
    bbox_to_anchor=(0.5,0.44,1,1), # 新轴的bbox
    bbox_transform=ax.transAxes # bbox_to_anchor 的坐标基准
    )
# 绘制条形图
ax_bar=sns.barplot(
    data=df_bar,
    # 交换 x 轴和 y 轴列名实现横向条形图
    x="signal", y="subject", 
    palette='Set2',
    ax=ax_bar
)
# 使用 sns 的 bar_label 函数为条形图添加标注
ax_bar.bar_label(
    ax_bar.containers[0], # 条形图的 BarContainer 对象
    labels=df_bar['subject'], # 要标注的labels,默认为 bar 的数值,此处传入自定义的label序列
    label_type='edge', # 标注显示的位置,可选 edge 或 center
    padding=2, # 标注与bar之间的距离
    # fmt='%.2f' # 标注格式化字符串
    fontsize=10 # 设置标注的字体大小
    )
# 为了避免标注超出绘图范围,将x轴的绘图范围扩大
plt.xlim(0,0.62)
# 隐藏左侧y轴
ax_bar.yaxis.set_visible(False)
# 去除多余的轴线
sns.despine()

打完收工!

相关推荐
可触的未来,发芽的智生1 小时前
触摸未来2025.10.10:记忆的种子,当神经网络拥有了临时工作区,小名喜忆记系统
人工智能·python·神经网络·机器学习·架构
mortimer1 小时前
在 Windows 上部署 NVIDIA Parakeet-TDT 遇到的坑
python·github·nvidia
Rock_yzh2 小时前
AI学习日记——卷积神经网络(CNN):完整实现与可视化分析
人工智能·python·深度学习·神经网络·学习·cnn
生信小白菜儿2 小时前
深度学习(DL)概念及实例操作
人工智能·python·深度学习
测试老哥2 小时前
如何编写好测试用例?
自动化测试·软件测试·python·功能测试·测试工具·职场和发展·测试用例
郝学胜-神的一滴3 小时前
Effective Python 第44条:用纯属性与修饰器取代旧式的 setter 与 getter 方法
开发语言·python·程序人生·软件工程
嫂子的姐夫4 小时前
11-py调用js
javascript·爬虫·python·网络爬虫·爬山算法
图亚Vanta5 小时前
Python入门第一课:Python安装、VSCode/Pycharm配置
vscode·python·pycharm
睿思达DBA_WGX5 小时前
使用 python-docx 库操作 word 文档(2):在word文档中插入各种内容
python·word
kunge1v56 小时前
学习爬虫第五天:自动化爬虫
爬虫·python·自动化