【神经网络】基础知识与CNN网络基本框架

神经网络基础架构

基础动图网站:点击这里

整体框架为输入层,中间隐藏层,最后输出结果。

输入层,在这里图中主要是确定输入什么样的参数。比如说这个例子做分类,每一个点具有一个二维坐标系,那么可以选择的输入就如图所示。最基础的就是输入x, y坐标。还可以输入其他的值。

中间隐藏层由一个一个神经元组成(neuron)。具体的个数可以随便更改,隐藏层层数也可以随意更改。

最后输出层,主要看具体问题,需要输出什么。这个例子我也看不懂输出什么,应该是最后的右边图的底层,分界线就是作为分类吧。

神经元

普通神经元所需要干的活,就是把前面一层所有的输出值全部加权平均一下,获得自己的值。然后这个值可以再添加额外的bias,最后得到最终传递给下一层的值。

CNN

CNN卷积神经网络,主要用于图像识别。

学习网站:https://poloclub.github.io/cnn-explainer/#article-pooling

首先明确问题,给出一个咖啡样张,让神经网络进行判断。

上文写到,神经网络具有3层:输入、隐藏、输出。

输入为一张图片,输出为咖啡具体品类。

图片输入一般都采取RGB采样输入,三通道各自的值进行输入。

最后output确定是什么品类。至于怎么区别后面再说,暂时先理解为值越大说明是这个品类概率越高。

再看隐藏层复杂的多。

多了很多特别层,刚才的层都是很简单,加权平均输入,加bias输出就好。这里面层会不一样。

conv层:宏观来看他让输入64×64变为62×62.采取方式是,从图片0,0为左上角,开一个大小为3×3的正方形,小正方形做一个权平均,一直做到61,61最后得到一个62×62的图片。输入层都这么干一下,然后输入层,每一个像素点自己再做一下加权平均,bias然后输出。

relu层:一般作为激活函数,有啥用不知道。但是知道一下怎么计算的,针对每一个输出图像每一个像素单独计算,超过0取本身,小于0取0.

max_pool:跟各刚刚那个去小正方体类似,但是是将60×60压缩成了30×30.做法是比如0,0为左上角取2×2小正方体,然后小正方体里面比一下,取最大值作为该像素的值,然后2,2再作为左上角以此次类推。最后获得30×30.

上面层理解后,就累在一起形成了隐藏层。

最后经过隐藏层输出的是10张图片。但最后输出的是种类,显然是一个一维数组,所以就用了flatten降维,原理非常简单,直接每一行拼接到第一行就完了。最后再根据输出种类,每一个算一个加权平均加一个bias就行。最后让数据好看一些,再加一个softmax函数,让这个一维数组调整一下数值,完了大的代表是哪个种类概率高就完了。

相关推荐
乐居生活官2 分钟前
2026五大功能全面的电商软件测评:打造全链路智能运营体系
大数据·人工智能
百***35484 分钟前
2026年GEO服务商选择指南:从信息过载中构建品牌清晰度
人工智能
audyxiao00114 分钟前
会议热点扫描|智慧教育顶级会议AIED 2025的研究热点可视化分析
人工智能·智慧教育·会议热点·aied
执笔论英雄14 分钟前
【梯度检查点】
人工智能
虫小宝19 分钟前
电商AI导购系统工程化实践:模型训练、部署与在线推理的架构设计
人工智能
Dreaming_of_you22 分钟前
pytorch/cv2/pil/torchvision处理图像缩小的最佳方案
人工智能·pytorch·python·opencv
shangjian00735 分钟前
AI-大语言模型LLM-Transformer架构3-嵌入和位置编码
人工智能·语言模型·transformer
ws20190743 分钟前
智驾与电池双线突破?AUTO TECH China 2026广州新能源汽车展解码产业新局
大数据·人工智能·科技·汽车
美狐美颜SDK开放平台43 分钟前
直播场景下抖动特效的实现方案:美颜sdk开发经验分享
前端·人工智能·美颜sdk·直播美颜sdk·视频美颜sdk
2501_941982051 小时前
企业微信外部群精准运营:API 主动推送消息开发指南
大数据·人工智能·企业微信