数据下载
The KITTI Vision Benchmark Suite
这里以 2011_09_26_drive_0005 (0.6 GB)数据为参考,下载[synced+rectified data] [calibration] 数据。
下载完毕之后解压,然后将calibration文件解压后的结果放在如下目录下,

下载kitti2bag包
python
pip install kitti2bag
如果后期出现如下错误:
ImportError: dynamic module does not define module export function (PyInit__tf2)
则执行如下重新安装
python
pip2 install kitti2bag
进入到2011_09_26文件夹的同级目录中,执行如下代码进行转换:
bash
kitti2bag -t 2011_09_26 -r 0005 raw_synced
运行截图如下:

运行结束之后,会在当前目录下生成一个bag文件。

启动ROS,并进行播放
bash
roscore
进入到刚刚生成bag文件的目录下,执行如下代码:
bash
rqt_bag kitti_2011_09_26_drive_0005_synced.bag
生成如下截图:

选择其中一个图像话题,右键,选择view -》选择image,然后点击play进行播放。
发布图片
创建工作空间,并创建功能包
bash
~/catkin_ws/src$ catkin_create_pkg kitti_tutorial rospy
编写kitti.py代码
python
#!/usr/bin/env python
import cv2
import os
import rospy
from sensor_msgs.msg import Image
from cv_bridge import CvBridge
DATA_PATH = "/home/d501/kitti_data/2011_09_26/2011_09_26_drive_0005_sync/2011_09_26/2011_09_26_drive_0005_sync"
if __name__ == "__main__":
frame = 0
rospy.init_node("kitti_node", anonymous=True)
cam_pub = rospy.Publisher('kitti_cam', Image, queue_size=10)
bridge = CvBridge()
rate = rospy.Rate(10)
while not rospy.is_shutdown():
img = cv2.imread(os.path.join(DATA_PATH, 'image_02/data/%010d.png'%frame))
cam_pub.publish(bridge.cv2_to_imgmsg(img, 'bgr8'))
rospy.loginfo("camera image published")
rate.sleep()
frame += 1
frame %= 154
添加可执行权限
bash
sudo chmod +x kitti.py
编译工作空间
bash
~/catkin_ws$ catkin_make
~/catkin_ws$ source devel/setup.bash
在使用pycharm编写python程序时,
问题:在pycharm中使用ros时候,遇到"No module named rospy"
pycharm中无法加载rospy_pycharm no module named rospy-CSDN博客
将解释器更换为opt下的python2.7
启动rviz
bash
rviz
启动ros节点
bash
~/catkin_ws$ rosrun kitti_tutorial kitti.py
添加topic

如图所示:
发布点云数据
修改kitti.py代码
python
#!/usr/bin/env python
import numpy as np
import cv2
import os
import numpy as np
import rospy
from std_msgs.msg import Header
from sensor_msgs.msg import Image, PointCloud2
import sensor_msgs.point_cloud2 as pcl2
from cv_bridge import CvBridge
DATA_PATH = "/home/d501/kitti_data/2011_09_26/2011_09_26_drive_0005_sync/2011_09_26/2011_09_26_drive_0005_sync"
if __name__ == "__main__":
frame = 0
rospy.init_node("kitti_node", anonymous=True)
cam_pub = rospy.Publisher('kitti_cam', Image, queue_size=10)
pcl_pub = rospy.Publisher('kitti_point_cloud', PointCloud2, queue_size=10)
bridge = CvBridge()
rate = rospy.Rate(10)
while not rospy.is_shutdown():
img = cv2.imread(os.path.join(DATA_PATH, 'image_02/data/%010d.png'%frame))
point_cloud = np.fromfile(os.path.join(DATA_PATH, 'velodyne_points/data/%010d.bin'%frame), dtype=np.float32).reshape(-1, 4)
cam_pub.publish(bridge.cv2_to_imgmsg(img, 'bgr8'))
header = Header()
header.stamp = rospy.Time.now()
header.frame_id = 'map'
pcl_pub.publish(pcl2.create_cloud_xyz32(header, point_cloud[:,:3]))
rospy.loginfo("published")
rate.sleep()
frame += 1
frame %= 154
重新添加topic之后,如下:

调整size大小

将rviz存档,以后开启它就不用重新添加topic
点击File->Save Config As->选择包下的某个路径,保存为xxxx.rviz文件,下次启动时,使用rviz -d xxxx.rviz即可
添加照相机视野
重构代码data_utils.py
python
#!/usr/bin/env python
import cv2
import numpy as np
def read_camera(path):
return cv2.imread(path)
def read_point_cloud(path):
return np.fromfile(path, dtype=np.float32).reshape(-1, 4)
publish_utils.py
python
#!/usr/bin/env python
import rospy
from geometry_msgs.msg import Point
from std_msgs.msg import Header
from sensor_msgs.msg import Image, PointCloud2
import sensor_msgs.point_cloud2 as pcl2
from cv_bridge import CvBridge
from visualization_msgs.msg import Marker
FRAME_ID = 'map'
def publish_camera(cam_pub, bridge, image):
cam_pub.publish(bridge.cv2_to_imgmsg(image, 'bgr8'))
def publish_point_cloud(pcl_pub, point_cloud):
header = Header()
header.stamp = rospy.Time.now()
header.frame_id = FRAME_ID
pcl_pub.publish(pcl2.create_cloud_xyz32(header, point_cloud[:, :3]))
def publish_ego_car(ego_car_pub):
"""
publish left and right 45 degree FOV lines and ego car model mesh
:param ego_car_pub:
:return:
"""
marker = Marker()
marker.header.frame_id = FRAME_ID
marker.header.stamp = rospy.Time.now()
marker.id = 0
marker.action = Marker.ADD
marker.lifetime = rospy.Duration()
marker.type = Marker.LINE_STRIP
marker.color.r = 0.0
marker.color.g = 1.0
marker.color.b = 0.0
marker.color.a = 1.0
marker.scale.x = 0.2
marker.points = []
marker.points.append(Point(10, -10, 0))
marker.points.append(Point(0, 0, 0))
marker.points.append(Point(10, 10, 0))
ego_car_pub.publish(marker)
python
#!/usr/bin/env python
import numpy as np
import rospy
from data_utils import *
from publish_utils import *
import os
DATA_PATH = "/home/d501/kitti_data/2011_09_26/2011_09_26_drive_0005_sync/2011_09_26/2011_09_26_drive_0005_sync"
if __name__ == "__main__":
frame = 0
rospy.init_node("kitti_node", anonymous=True)
cam_pub = rospy.Publisher('kitti_cam', Image, queue_size=10)
pcl_pub = rospy.Publisher('kitti_point_cloud', PointCloud2, queue_size=10)
ego_pub = rospy.Publisher('kitti_ego_car', Marker, queue_size=10)
bridge = CvBridge()
rate = rospy.Rate(10)
while not rospy.is_shutdown():
image = read_camera(os.path.join(DATA_PATH, 'image_02/data/%010d.png'%frame))
point_cloud = read_point_cloud(os.path.join(DATA_PATH, 'velodyne_points/data/%010d.bin'%frame))
publish_camera(cam_pub, bridge, image)
publish_point_cloud(pcl_pub, point_cloud)
publish_ego_car(ego_pub)
rospy.loginfo("published")
rate.sleep()
frame += 1
frame %= 154

画出汽车模型
下载汽车模型Low-Poly Car Free 3D Model - .3ds .obj .dae .blend .fbx .mtl - Free3D
解压之后,将Car.dae文件放入到包下的某个文件夹中,这里直接使用原生解压的文件夹目录。
在publish_utils.py中添加如下代码
python
def publish_car_model(car_model_pub):
mech_marker = Marker()
mech_marker.header.frame_id = "map"
mech_marker.header.stamp = rospy.Time.now()
# id必须不一样,且只能是整数
mech_marker.id = -1
mech_marker.type = Marker.MESH_RESOURCE
mech_marker.action = Marker.ADD
mech_marker.lifetime = rospy.Duration()
mech_marker.mesh_resource = "package://kitti_tutorials/am7f3psa0agw-Car-Model/Car-Model/Car.dae" # .dae模型文件的相对地址
# 位置主要看官方提供的位置图
# 因为自车的velodyne激光雷达相对于map的位置是(0,0,0),看设备安装图上velodyne的位置是(0,0,1.73),显而易见,在rviz中自车模型位置应该是(0,0,-1.73)
mech_marker.pose.position.x = 0.0
mech_marker.pose.position.y = 0.0
mech_marker.pose.position.z = -1.73
# 这边和原作者的代码不一样,因为tf结构发生了一些改变,四元数需要自己根据模型做响应的调整,笔者这边是调整好的模型四元数
q = transformations.quaternion_from_euler(np.pi, np.pi, -np.pi / 2.0)
mech_marker.pose.orientation.x = q[0]
mech_marker.pose.orientation.y = q[1]
mech_marker.pose.orientation.z = q[2]
mech_marker.pose.orientation.w = q[3]
mech_marker.color.r = 1.0
mech_marker.color.g = 1.0
mech_marker.color.b = 1.0
mech_marker.color.a = 1.0 # 透明度
# 设置车辆大小
mech_marker.scale.x = 1.0
mech_marker.scale.y = 1.0
mech_marker.scale.z = 1.0
car_model_pub.publish(mech_marker)
修改kitti.py代码
python
#!/usr/bin/env python
import numpy as np
import rospy
from data_utils import *
from publish_utils import *
import os
DATA_PATH = "/home/d501/kitti_data/2011_09_26/2011_09_26_drive_0005_sync/2011_09_26/2011_09_26_drive_0005_sync"
if __name__ == "__main__":
frame = 0
rospy.init_node("kitti_node", anonymous=True)
cam_pub = rospy.Publisher('kitti_cam', Image, queue_size=10)
pcl_pub = rospy.Publisher('kitti_point_cloud', PointCloud2, queue_size=10)
ego_pub = rospy.Publisher('kitti_ego_car', Marker, queue_size=10)
model_pub = rospy.Publisher('kitti_car_model', Marker, queue_size=10)
bridge = CvBridge()
rate = rospy.Rate(10)
while not rospy.is_shutdown():
image = read_camera(os.path.join(DATA_PATH, 'image_02/data/%010d.png'%frame))
point_cloud = read_point_cloud(os.path.join(DATA_PATH, 'velodyne_points/data/%010d.bin'%frame))
publish_camera(cam_pub, bridge, image)
publish_point_cloud(pcl_pub, point_cloud)
publish_ego_car(ego_pub)
publish_car_model(model_pub)
rospy.loginfo("published")
rate.sleep()
frame += 1
frame %= 154
重新运行之后,出现错误:
ERROR\] \[1679018952.335224247\]: Could not load resource \[package://kitti_tutorials/meshes/Car.dae\]: Unable to open file "package://kitti_tutorials/meshes/Car.dae". \[rospack\] Error: package 'kitti_tutorial' not found 参考:[rviz进行kitti数据集可视化时加载小车模型报错_rviz could not load resourceunable to open file-CSDN博客](https://blog.csdn.net/weixin_45650071/article/details/129613060 "rviz进行kitti数据集可视化时加载小车模型报错_rviz could not load resourceunable to open file-CSDN博客")  #### 使用MarkerArray进行发布 修改publish_utils.py ```python def publish_ego_car(ego_car_pub): """ publish left and right 45 degree FOV lines and ego car model mesh :param ego_car_pub: :return: """ marker_array = MarkerArray() marker = Marker() marker.header.frame_id = FRAME_ID marker.header.stamp = rospy.Time.now() marker.id = 0 marker.action = Marker.ADD marker.lifetime = rospy.Duration() marker.type = Marker.LINE_STRIP marker.color.r = 0.0 marker.color.g = 1.0 marker.color.b = 0.0 marker.color.a = 1.0 marker.scale.x = 0.2 marker.points = [] marker.points.append(Point(10, -10, 0)) marker.points.append(Point(0, 0, 0)) marker.points.append(Point(10, 10, 0)) marker_array.markers.append(marker) mech_marker = Marker() mech_marker.header.frame_id = "map" mech_marker.header.stamp = rospy.Time.now() mech_marker.id = -1 mech_marker.type = Marker.MESH_RESOURCE mech_marker.action = Marker.ADD mech_marker.lifetime = rospy.Duration() mech_marker.mesh_resource = "package://kitti_tutorial/meshes/Car.dae" mech_marker.pose.position.x = 0.0 mech_marker.pose.position.y = 0.0 mech_marker.pose.position.z = -1.73 q = transformations.quaternion_from_euler(np.pi, np.pi, -np.pi / 2.0) mech_marker.pose.orientation.x = q[0] mech_marker.pose.orientation.y = q[1] mech_marker.pose.orientation.z = q[2] mech_marker.pose.orientation.w = q[3] mech_marker.color.r = 1.0 mech_marker.color.g = 1.0 mech_marker.color.b = 1.0 mech_marker.color.a = 1.0 mech_marker.scale.x = 1.0 mech_marker.scale.y = 1.0 mech_marker.scale.z = 1.0 marker_array.markers.append(mech_marker) ego_car_pub.publish(marker_array) ``` kitti.py代码 ```python #!/usr/bin/env python import numpy as np import rospy from data_utils import * from publish_utils import * import os DATA_PATH = "/home/d501/kitti_data/2011_09_26/2011_09_26_drive_0005_sync/2011_09_26/2011_09_26_drive_0005_sync" if __name__ == "__main__": frame = 0 rospy.init_node("kitti_node", anonymous=True) cam_pub = rospy.Publisher('kitti_cam', Image, queue_size=10) pcl_pub = rospy.Publisher('kitti_point_cloud', PointCloud2, queue_size=10) ego_pub = rospy.Publisher('kitti_ego_car', MarkerArray, queue_size=10) bridge = CvBridge() rate = rospy.Rate(10) while not rospy.is_shutdown(): image = read_camera(os.path.join(DATA_PATH, 'image_02/data/%010d.png'%frame)) point_cloud = read_point_cloud(os.path.join(DATA_PATH, 'velodyne_points/data/%010d.bin'%frame)) publish_camera(cam_pub, bridge, image) publish_point_cloud(pcl_pub, point_cloud) publish_ego_car(ego_pub) rospy.loginfo("published") rate.sleep() frame += 1 frame %= 154 ``` #### 发布IMU数据 data_utils.py添加 ```python IMU_NAME = ["lat", "lon", "alt", "roll", "pitch", "yaw", "vn", "ve", "vf", "vl", "vu", "ax", "ay", "az", "af", "al", "au", "wx", "wy", "wz", "wf", "wl", "wu", "posacc", "velacc", "navstat", "numsats", "posmode", "velmode", "orimode"] def read_imu(path): imu_data = pd.read_csv(path, header=None, sep = " ") imu_data.columns = IMU_NAME return imu_data ``` publish_utils.py ```python def publish_imu(imu_pub, imu_data): imu = Imu() imu.header.frame_id = "map" imu.header.stamp = rospy.Time.now() q = transformations.quaternion_from_euler(float(imu_data.roll), float(imu_data.pitch), float(imu_data.yaw)) imu.orientation.x = q[0] imu.orientation.y = q[1] imu.orientation.z = q[2] imu.orientation.w = q[3] imu.linear_acceleration.x = imu_data.af imu.linear_acceleration.y = imu_data.al imu.linear_acceleration.z = imu_data.au imu.angular_velocity.x = imu_data.wx imu.angular_velocity.y = imu_data.wy imu.angular_velocity.z = imu_data.wz imu_pub.publish(imu) ``` kitti.py ```python #!/usr/bin/env python import numpy as np import rospy from data_utils import * from publish_utils import * import os DATA_PATH = "/home/d501/kitti_data/2011_09_26/2011_09_26_drive_0005_sync/2011_09_26/2011_09_26_drive_0005_sync" if __name__ == "__main__": frame = 0 rospy.init_node("kitti_node", anonymous=True) cam_pub = rospy.Publisher('kitti_cam', Image, queue_size=10) pcl_pub = rospy.Publisher('kitti_point_cloud', PointCloud2, queue_size=10) ego_pub = rospy.Publisher('kitti_ego_car', MarkerArray, queue_size=10) imu_pub = rospy.Publisher('kitti_imu', Imu, queue_size=10) bridge = CvBridge() rate = rospy.Rate(10) while not rospy.is_shutdown(): image = read_camera(os.path.join(DATA_PATH, 'image_02/data/%010d.png'%frame)) point_cloud = read_point_cloud(os.path.join(DATA_PATH, 'velodyne_points/data/%010d.bin'%frame)) imu_data = read_imu(os.path.join(DATA_PATH, 'oxts/data/%010d.txt'%frame)) publish_camera(cam_pub, bridge, image) publish_point_cloud(pcl_pub, point_cloud) publish_ego_car(ego_pub) publish_imu(imu_pub, imu_data) rospy.loginfo("published") rate.sleep() frame += 1 frame %= 154 ``` 订阅话题显示如下:  #### 发布GPS数据 publish_utils.py添加代码 ```python def publish_gps(gps_pub, gps_data): gps = NavSatFix() gps.header.frame_id = "map" gps.header.stamp = rospy.Time.now() gps.latitude = gps_data.lat gps.longitude = gps_data.lon gps.altitude = gps_data.alt gps_pub.publish(gps) ``` kitti.py代码 ```python #!/usr/bin/env python import numpy as np import rospy from data_utils import * from publish_utils import * import os DATA_PATH = "/home/d501/kitti_data/2011_09_26/2011_09_26_drive_0005_sync/2011_09_26/2011_09_26_drive_0005_sync" if __name__ == "__main__": frame = 0 rospy.init_node("kitti_node", anonymous=True) cam_pub = rospy.Publisher('kitti_cam', Image, queue_size=10) pcl_pub = rospy.Publisher('kitti_point_cloud', PointCloud2, queue_size=10) ego_pub = rospy.Publisher('kitti_ego_car', MarkerArray, queue_size=10) imu_pub = rospy.Publisher('kitti_imu', Imu, queue_size=10) gps_pub = rospy.Publisher('kitti_gps', NavSatFix, queue_size=10) bridge = CvBridge() rate = rospy.Rate(10) while not rospy.is_shutdown(): image = read_camera(os.path.join(DATA_PATH, 'image_02/data/%010d.png'%frame)) point_cloud = read_point_cloud(os.path.join(DATA_PATH, 'velodyne_points/data/%010d.bin'%frame)) imu_data = read_imu(os.path.join(DATA_PATH, 'oxts/data/%010d.txt'%frame)) publish_camera(cam_pub, bridge, image) publish_point_cloud(pcl_pub, point_cloud) publish_ego_car(ego_pub) publish_imu(imu_pub, imu_data) publish_gps(gps_pub, imu_data) rospy.loginfo("published") rate.sleep() frame += 1 frame %= 154 ```  #### 画出2D检测框 参考[ROS1结合自动驾驶数据集Kitti开发教程(七)下载图像标注资料并读取显示_kitti 视觉slam00/data.txt-CSDN博客](https://blog.csdn.net/xiaokai1999/article/details/119393275?spm=1001.2014.3001.5502 "ROS1结合自动驾驶数据集Kitti开发教程(七)下载图像标注资料并读取显示_kitti 视觉slam00/data.txt-CSDN博客") [ROS1结合自动驾驶数据集Kitti开发教程(八)画出2D检测框_ros2如何在image上绘制2d包围框-CSDN博客](https://blog.csdn.net/xiaokai1999/article/details/119428649?spm=1001.2014.3001.5502 "ROS1结合自动驾驶数据集Kitti开发教程(八)画出2D检测框_ros2如何在image上绘制2d包围框-CSDN博客") 代码: kitti.py ```python #!/usr/bin/env python import numpy as np import rospy from data_utils import * from publish_utils import * import os DATA_PATH = "/home/d501/kitti_data/2011_09_26/2011_09_26_drive_0005_sync/2011_09_26/2011_09_26_drive_0005_sync" if __name__ == "__main__": frame = 0 rospy.init_node("kitti_node", anonymous=True) cam_pub = rospy.Publisher('kitti_cam', Image, queue_size=10) pcl_pub = rospy.Publisher('kitti_point_cloud', PointCloud2, queue_size=10) ego_pub = rospy.Publisher('kitti_ego_car', MarkerArray, queue_size=10) imu_pub = rospy.Publisher('kitti_imu', Imu, queue_size=10) gps_pub = rospy.Publisher('kitti_gps', NavSatFix, queue_size=10) bridge = CvBridge() df_tracking = read_labelfile('/home/d501//kitti_data/2011_09_26/data_tracking_label_2/training/label_02/0000.txt') rate = rospy.Rate(10) while not rospy.is_shutdown(): boxes = np.array(df_tracking[df_tracking.frame==frame][['bbox_left','bbox_top','bbox_right','bbox_bottom']]) types = np.array(df_tracking[df_tracking.frame==frame]['type']) image = read_camera(os.path.join(DATA_PATH, 'image_02/data/%010d.png'%frame)) point_cloud = read_point_cloud(os.path.join(DATA_PATH, 'velodyne_points/data/%010d.bin'%frame)) imu_data = read_imu(os.path.join(DATA_PATH, 'oxts/data/%010d.txt'%frame)) publish_camera(cam_pub, bridge, image, boxes, types) publish_point_cloud(pcl_pub, point_cloud) publish_ego_car(ego_pub) publish_imu(imu_pub, imu_data) publish_gps(gps_pub, imu_data) rospy.loginfo("published") rate.sleep() frame += 1 frame %= 154 ``` data_utils.py ```python #!/usr/bin/env python import cv2 import numpy as np import pandas as pd IMU_NAME = ["lat", "lon", "alt", "roll", "pitch", "yaw", "vn", "ve", "vf", "vl", "vu", "ax", "ay", "az", "af", "al", "au", "wx", "wy", "wz", "wf", "wl", "wu", "posacc", "velacc", "navstat", "numsats", "posmode", "velmode", "orimode"] LABEL_NAME = ["frame", "track id", "type", "truncated", "occluded", "alpha", "bbox_left", "bbox_top", "bbox_right", "bbox_bottom", "dimensions_height", "dimensions_width", "dimensions_length", "location_x", "location_y", "location_z", "rotation_y"] def read_camera(path): return cv2.imread(path) def read_point_cloud(path): return np.fromfile(path, dtype=np.float32).reshape(-1, 4) def read_imu(path): imu_data = pd.read_csv(path, header=None, sep = " ") imu_data.columns = IMU_NAME return imu_data def read_labelfile(path): data = pd.read_csv(path, header=None, sep=" ") data.columns = LABEL_NAME data.loc[data.type.isin(['Van', 'Car', 'Truck']), 'type'] = 'Car' data = data[data.type.isin(['Car', 'Cyclist', 'Pedestrian'])] return data ``` publish_utils.py ```python #!/usr/bin/env python import cv2 import rospy from geometry_msgs.msg import Point from std_msgs.msg import Header from sensor_msgs.msg import Image, PointCloud2, Imu, NavSatFix import sensor_msgs.point_cloud2 as pcl2 from cv_bridge import CvBridge from tf import transformations from visualization_msgs.msg import Marker, MarkerArray import numpy as np import pandas as pd import os FRAME_ID = 'map' DETECTION_COLOR_DICT = {'Car': (255, 255, 0), 'Pedestrian': (0, 226, 255), 'Cyclist': (141, 40, 255)} def publish_camera(cam_pub, bridge, image, boxes, types): for type, box in zip(types, boxes): top_left = int(box[0]), int(box[1]) bottom_right = int(box[2]), int(box[3]) cv2.rectangle(image, top_left, bottom_right, DETECTION_COLOR_DICT[type], 2) cam_pub.publish(bridge.cv2_to_imgmsg(image, 'bgr8')) def publish_point_cloud(pcl_pub, point_cloud): header = Header() header.stamp = rospy.Time.now() header.frame_id = FRAME_ID pcl_pub.publish(pcl2.create_cloud_xyz32(header, point_cloud[:, :3])) def publish_ego_car(ego_car_pub): """ publish left and right 45 degree FOV lines and ego car model mesh :param ego_car_pub: :return: """ marker_array = MarkerArray() marker = Marker() marker.header.frame_id = FRAME_ID marker.header.stamp = rospy.Time.now() marker.id = 0 marker.action = Marker.ADD marker.lifetime = rospy.Duration() marker.type = Marker.LINE_STRIP marker.color.r = 0.0 marker.color.g = 1.0 marker.color.b = 0.0 marker.color.a = 1.0 marker.scale.x = 0.2 marker.points = [] marker.points.append(Point(10, -10, 0)) marker.points.append(Point(0, 0, 0)) marker.points.append(Point(10, 10, 0)) marker_array.markers.append(marker) mech_marker = Marker() mech_marker.header.frame_id = "map" mech_marker.header.stamp = rospy.Time.now() mech_marker.id = -1 mech_marker.type = Marker.MESH_RESOURCE mech_marker.action = Marker.ADD mech_marker.lifetime = rospy.Duration() mech_marker.mesh_resource = "package://kitti_tutorial/meshes/Car.dae" mech_marker.pose.position.x = 0.0 mech_marker.pose.position.y = 0.0 mech_marker.pose.position.z = -1.73 q = transformations.quaternion_from_euler(np.pi, np.pi, -np.pi / 2.0) mech_marker.pose.orientation.x = q[0] mech_marker.pose.orientation.y = q[1] mech_marker.pose.orientation.z = q[2] mech_marker.pose.orientation.w = q[3] mech_marker.color.r = 1.0 mech_marker.color.g = 1.0 mech_marker.color.b = 1.0 mech_marker.color.a = 1.0 mech_marker.scale.x = 1.0 mech_marker.scale.y = 1.0 mech_marker.scale.z = 1.0 marker_array.markers.append(mech_marker) ego_car_pub.publish(marker_array) def publish_imu(imu_pub, imu_data): imu = Imu() imu.header.frame_id = "map" imu.header.stamp = rospy.Time.now() q = transformations.quaternion_from_euler(float(imu_data.roll), float(imu_data.pitch), float(imu_data.yaw)) imu.orientation.x = q[0] imu.orientation.y = q[1] imu.orientation.z = q[2] imu.orientation.w = q[3] imu.linear_acceleration.x = imu_data.af imu.linear_acceleration.y = imu_data.al imu.linear_acceleration.z = imu_data.au imu.angular_velocity.x = imu_data.wx imu.angular_velocity.y = imu_data.wy imu.angular_velocity.z = imu_data.wz imu_pub.publish(imu) def publish_gps(gps_pub, gps_data): gps = NavSatFix() gps.header.frame_id = "map" gps.header.stamp = rospy.Time.now() gps.latitude = gps_data.lat gps.longitude = gps_data.lon gps.altitude = gps_data.alt gps_pub.publish(gps) ``` 结果如下:  #### 画出3D检测框 参考:[ROS1结合自动驾驶数据集Kitti开发教程(九)画出3D检测框\[1\]_ros 画3d框-CSDN博客](https://blog.csdn.net/xiaokai1999/article/details/119581425?spm=1001.2014.3001.5502 "ROS1结合自动驾驶数据集Kitti开发教程(九)画出3D检测框[1]_ros 画3d框-CSDN博客") 下面贴出代码: publish_utils.py ```python #!/usr/bin/env python import cv2 import rospy from geometry_msgs.msg import Point from std_msgs.msg import Header from sensor_msgs.msg import Image, PointCloud2, Imu, NavSatFix import sensor_msgs.point_cloud2 as pcl2 from cv_bridge import CvBridge from tf import transformations from visualization_msgs.msg import Marker, MarkerArray import numpy as np import pandas as pd import os FRAME_ID = 'map' DETECTION_COLOR_DICT = {'Car': (255, 255, 0), 'Pedestrian': (0, 226, 255), 'Cyclist': (141, 40, 255)} LIFETIME = 0.1 LINES = [[0, 1], [1, 2], [2, 3], [3, 0]] # Lower plane parallel to Z=0 plane LINES += [[4, 5], [5, 6], [6, 7], [7, 4]] # Upper plane parallel to Z=0 plane LINES += [[0, 4], [1, 5], [2, 6], [3, 7]] # Connections between upper and lower planes LINES += [[4,1], [5,0]] def publish_camera(cam_pub, bridge, image, boxes, types): for type, box in zip(types, boxes): top_left = int(box[0]), int(box[1]) bottom_right = int(box[2]), int(box[3]) cv2.rectangle(image, top_left, bottom_right, DETECTION_COLOR_DICT[type], 2) cam_pub.publish(bridge.cv2_to_imgmsg(image, 'bgr8')) def publish_point_cloud(pcl_pub, point_cloud): header = Header() header.stamp = rospy.Time.now() header.frame_id = FRAME_ID pcl_pub.publish(pcl2.create_cloud_xyz32(header, point_cloud[:, :3])) def publish_ego_car(ego_car_pub): """ publish left and right 45 degree FOV lines and ego car model mesh :param ego_car_pub: :return: """ marker_array = MarkerArray() marker = Marker() marker.header.frame_id = FRAME_ID marker.header.stamp = rospy.Time.now() marker.id = 0 marker.action = Marker.ADD marker.lifetime = rospy.Duration() marker.type = Marker.LINE_STRIP marker.color.r = 0.0 marker.color.g = 1.0 marker.color.b = 0.0 marker.color.a = 1.0 marker.scale.x = 0.2 marker.points = [] marker.points.append(Point(10, -10, 0)) marker.points.append(Point(0, 0, 0)) marker.points.append(Point(10, 10, 0)) marker_array.markers.append(marker) mech_marker = Marker() mech_marker.header.frame_id = "map" mech_marker.header.stamp = rospy.Time.now() mech_marker.id = -1 mech_marker.type = Marker.MESH_RESOURCE mech_marker.action = Marker.ADD mech_marker.lifetime = rospy.Duration() mech_marker.mesh_resource = "package://kitti_tutorial/meshes/Car.dae" mech_marker.pose.position.x = 0.0 mech_marker.pose.position.y = 0.0 mech_marker.pose.position.z = -1.73 q = transformations.quaternion_from_euler(np.pi, np.pi, -np.pi / 2.0) mech_marker.pose.orientation.x = q[0] mech_marker.pose.orientation.y = q[1] mech_marker.pose.orientation.z = q[2] mech_marker.pose.orientation.w = q[3] mech_marker.color.r = 1.0 mech_marker.color.g = 1.0 mech_marker.color.b = 1.0 mech_marker.color.a = 1.0 mech_marker.scale.x = 1.0 mech_marker.scale.y = 1.0 mech_marker.scale.z = 1.0 marker_array.markers.append(mech_marker) ego_car_pub.publish(marker_array) def publish_imu(imu_pub, imu_data): imu = Imu() imu.header.frame_id = "map" imu.header.stamp = rospy.Time.now() q = transformations.quaternion_from_euler(float(imu_data.roll), float(imu_data.pitch), float(imu_data.yaw)) imu.orientation.x = q[0] imu.orientation.y = q[1] imu.orientation.z = q[2] imu.orientation.w = q[3] imu.linear_acceleration.x = imu_data.af imu.linear_acceleration.y = imu_data.al imu.linear_acceleration.z = imu_data.au imu.angular_velocity.x = imu_data.wx imu.angular_velocity.y = imu_data.wy imu.angular_velocity.z = imu_data.wz imu_pub.publish(imu) def publish_gps(gps_pub, gps_data): gps = NavSatFix() gps.header.frame_id = "map" gps.header.stamp = rospy.Time.now() gps.latitude = gps_data.lat gps.longitude = gps_data.lon gps.altitude = gps_data.alt gps_pub.publish(gps) def publish_3dbox(box3d_pub, corners_3d_velos, types): marker_array = MarkerArray() for i, corners_3d_velo in enumerate(corners_3d_velos): marker = Marker() marker.header.frame_id = FRAME_ID marker.header.stamp = rospy.Time.now() marker.id = i marker.action = Marker.ADD marker.lifetime = rospy.Duration(LIFETIME) marker.type = Marker.LINE_LIST b, g, r = DETECTION_COLOR_DICT[types[i]] marker.color.r = r/255.0 marker.color.g = g/255.0 marker.color.b = b/255.0 marker.color.a = 1.0 marker.scale.x = 0.1 marker.points = [] for l in LINES: p1 = corners_3d_velo[l[0]] marker.points.append(Point(p1[0], p1[1], p1[2])) p2 = corners_3d_velo[l[1]] marker.points.append(Point(p2[0], p2[1], p2[2])) marker_array.markers.append(marker) box3d_pub.publish(marker_array) ``` 下载`calibration`转换程序:[kitti_util.py](https://github.com/charlesq34/frustum-pointnets/edit/master/kitti/kitti_util.py "kitti_util.py") kitti.py ```python #!/usr/bin/env python # -*-coding:utf8 -*- import numpy as np import rospy from data_utils import * from publish_utils import * from kitti_util import * import os DATA_PATH = "/home/d501/kitti_data/2011_09_26/2011_09_26_drive_0005_sync/2011_09_26/2011_09_26_drive_0005_sync" def compute_3d_box_cam2(h, w, l, x, y, z, yaw): # 计算旋转矩阵 R = np.array([[np.cos(yaw), 0, np.sin(yaw)], [0, 1, 0], [-np.sin(yaw), 0, np.cos(yaw)]]) # 8个顶点的xyz x_corners = [l/2,l/2,-l/2,-l/2,l/2,l/2,-l/2,-l/2] y_corners = [0,0,0,0,-h,-h,-h,-h] z_corners = [w/2,-w/2,-w/2,w/2,w/2,-w/2,-w/2,w/2] # 旋转矩阵点乘(3,8)顶点矩阵 corners_3d_cam2 = np.dot(R, np.vstack([x_corners,y_corners,z_corners])) # 加上location中心点,得出8个顶点旋转后的坐标 corners_3d_cam2 += np.vstack([x,y,z]) return corners_3d_cam2 if __name__ == "__main__": frame = 0 rospy.init_node("kitti_node", anonymous=True) cam_pub = rospy.Publisher('kitti_cam', Image, queue_size=10) pcl_pub = rospy.Publisher('kitti_point_cloud', PointCloud2, queue_size=10) ego_pub = rospy.Publisher('kitti_ego_car', MarkerArray, queue_size=10) imu_pub = rospy.Publisher('kitti_imu', Imu, queue_size=10) gps_pub = rospy.Publisher('kitti_gps', NavSatFix, queue_size=10) box3d_pub = rospy.Publisher('kitti_3d', MarkerArray, queue_size=10) bridge = CvBridge() df_tracking = read_labelfile('/home/d501//kitti_data/2011_09_26/data_tracking_label_2/training/label_02/0000.txt') calib = Calibration("/home/d501//kitti_data/2011_09_26/2011_09_26_drive_0005_sync/2011_09_26", from_video=True) rate = rospy.Rate(10) while not rospy.is_shutdown(): df_tracking_frame = df_tracking[df_tracking.frame==frame] boxes_2d = np.array(df_tracking[df_tracking.frame==frame][['bbox_left','bbox_top','bbox_right','bbox_bottom']]) types = np.array(df_tracking[df_tracking.frame==frame]['type']) boxes_3d = np.array(df_tracking_frame[['dimensions_height','dimensions_width','dimensions_length','location_x','location_y','location_z','rotation_y']]) corners_3d_velos = [] for box_3d in boxes_3d: corners_3d_cam2 = compute_3d_box_cam2(*box_3d) corners_3d_velo = calib.project_rect_to_velo(corners_3d_cam2.T) corners_3d_velos += [corners_3d_velo] image = read_camera(os.path.join(DATA_PATH, 'image_02/data/%010d.png'%frame)) point_cloud = read_point_cloud(os.path.join(DATA_PATH, 'velodyne_points/data/%010d.bin'%frame)) imu_data = read_imu(os.path.join(DATA_PATH, 'oxts/data/%010d.txt'%frame)) publish_camera(cam_pub, bridge, image, boxes_2d, types) publish_point_cloud(pcl_pub, point_cloud) publish_ego_car(ego_pub) publish_imu(imu_pub, imu_data) publish_gps(gps_pub, imu_data) publish_3dbox(box3d_pub, corners_3d_velos, types) rospy.loginfo("published") rate.sleep() frame += 1 frame %= 154 ``` 运行截图: 