人工智能之Tensorflow程序结构

TensorFlow作为分布式机器学习平台,主要架构如下:

网络层:远程过程调用(gRPC)和远程直接数据存取(RDMA)作为网络层,主要负责传递神经网络算法参数
设备层:CPU、GPU等设备,主要负责神经网络算法中具体的运算操作
运行时核心:为Tensorflow中算法操作的具体实现,如卷积操作、激活操作等。

  • 分布运行时:主机(Master)用于构建子图,切割子图为多个分片,不同子图分片运行在不同的设备上。Master还负责分发子图切片到Worker。Worker在设备上调度执行子图操作,并负责向其他执行器发送和接收图操作的运行结果。

API: API 把TensorFlow分割为前端和后端,前端 (Python/C++/Java Client/Go)基于API触发TensorFlow后端程序运行。
训练库和推理库:是模型训练和推导 的库函数,为用户开发应用模型使用。

TensorFlow的数据流图是由节点和边组成的有向无环图Tensor代表数据流图中的Flow代表数据流图中节点所做的操作

TensorFlow将程序分为两个独立的部分:

  1. 定义并构建神经网络结构图:包括激活函数定义、损失函数定义、分类模型定义等。
  2. 执行神经网络模型,包括数据集输入、初始赋值及通过会话编译运行等。

示例如下:

(1)定义各种张量结构的变量,然后建立一个数据流图,在数据流图中规定各个变量之间的计算关系,最后对数据流图进行编译,编译之后把需要计算的输入放进去,形成数据流,从而形成输出值

python 复制代码
import tensorflow as tf
t=tf.add(8,9)
print(t) 
#数据流图中节点对应的是一个API中操作,并没有真正去运行

(2)TensorFlow涉及的运算都要放在图中,而图的运行只发生在会话中,开启会话后,就可以用数据去填充节点,进行运算,关闭会话后就不能进行计算。

会话提供了操作运行和Tensor求值的环境。

python 复制代码
import tensorflow as tf
tf.compat.v1.disable_eager_execution()
#创建图
one=tf.constant([1.0,2.0])
two=tf.constant([3.0,4.0])
oper=one*two

#创建会话
sess=tf.compat.v1.Session()
#计算oper
print(sess.run(oper))
sess.close()

神经完了结构图的定义和执行分开设计,所以TensorFlow能够多平台工作以并行执行。

相关推荐
这张生成的图像能检测吗2 分钟前
(论文速读)超像素引导低光图像增强与特征恢复
图像处理·人工智能·目标检测·计算机视觉·低照度图像增强
机器之心11 分钟前
吴恩达关注的Ling-1T背后,蚂蚁Ling 2.0技术报告解密万亿模型开源配方
人工智能·openai
空白到白25 分钟前
NLP相关面试题
人工智能·自然语言处理
嵌入式-老费28 分钟前
Easyx图形库应用(和opencv协同)
人工智能·opencv·计算机视觉
放羊郎31 分钟前
基于三维点云图的路径规划
人工智能·动态规划·slam·点云·路径规划·激光slam
算家计算32 分钟前
英伟达亮出最强AI芯片!性能暴增3倍,算力竞赛迎来新节点
人工智能·nvidia·芯片
AndrewHZ40 分钟前
【图像处理基石】图像滤镜的算法原理:从基础到进阶的技术解析
图像处理·python·opencv·算法·计算机视觉·滤镜·cv
lxmyzzs41 分钟前
【图像算法 - 30】基于深度学习的PCB板缺陷检测系统: YOLOv11 + UI界面 + 数据集实现
人工智能·深度学习·算法·yolo·缺陷检测
Patrick_Wilson1 小时前
AI 时代下的工程师核心竞争力思考
人工智能·ai编程·求职
AI优秘企业大脑1 小时前
更新维护:定期更新、功能修复、性能优化的全面指南
大数据·人工智能