人工智能之Tensorflow程序结构

TensorFlow作为分布式机器学习平台,主要架构如下:

网络层:远程过程调用(gRPC)和远程直接数据存取(RDMA)作为网络层,主要负责传递神经网络算法参数
设备层:CPU、GPU等设备,主要负责神经网络算法中具体的运算操作
运行时核心:为Tensorflow中算法操作的具体实现,如卷积操作、激活操作等。

  • 分布运行时:主机(Master)用于构建子图,切割子图为多个分片,不同子图分片运行在不同的设备上。Master还负责分发子图切片到Worker。Worker在设备上调度执行子图操作,并负责向其他执行器发送和接收图操作的运行结果。

API: API 把TensorFlow分割为前端和后端,前端 (Python/C++/Java Client/Go)基于API触发TensorFlow后端程序运行。
训练库和推理库:是模型训练和推导 的库函数,为用户开发应用模型使用。

TensorFlow的数据流图是由节点和边组成的有向无环图Tensor代表数据流图中的Flow代表数据流图中节点所做的操作

TensorFlow将程序分为两个独立的部分:

  1. 定义并构建神经网络结构图:包括激活函数定义、损失函数定义、分类模型定义等。
  2. 执行神经网络模型,包括数据集输入、初始赋值及通过会话编译运行等。

示例如下:

(1)定义各种张量结构的变量,然后建立一个数据流图,在数据流图中规定各个变量之间的计算关系,最后对数据流图进行编译,编译之后把需要计算的输入放进去,形成数据流,从而形成输出值

python 复制代码
import tensorflow as tf
t=tf.add(8,9)
print(t) 
#数据流图中节点对应的是一个API中操作,并没有真正去运行

(2)TensorFlow涉及的运算都要放在图中,而图的运行只发生在会话中,开启会话后,就可以用数据去填充节点,进行运算,关闭会话后就不能进行计算。

会话提供了操作运行和Tensor求值的环境。

python 复制代码
import tensorflow as tf
tf.compat.v1.disable_eager_execution()
#创建图
one=tf.constant([1.0,2.0])
two=tf.constant([3.0,4.0])
oper=one*two

#创建会话
sess=tf.compat.v1.Session()
#计算oper
print(sess.run(oper))
sess.close()

神经完了结构图的定义和执行分开设计,所以TensorFlow能够多平台工作以并行执行。

相关推荐
luofeiju4 分钟前
RGB下的色彩变换:用线性代数解构色彩世界
图像处理·人工智能·opencv·线性代数
测试者家园6 分钟前
基于DeepSeek和crewAI构建测试用例脚本生成器
人工智能·python·测试用例·智能体·智能化测试·crewai
张较瘦_10 分钟前
[论文阅读] 人工智能 + 软件工程 | Call Me Maybe:用图神经网络增强JavaScript调用图构建
论文阅读·人工智能·软件工程
大模型真好玩11 分钟前
准确率飙升!Graph RAG如何利用知识图谱提升RAG答案质量(四)——微软GraphRAG代码实战
人工智能·python·mcp
前端付豪18 分钟前
11、打造自己的 CLI 工具:从命令行到桌面效率神器
后端·python
前端付豪18 分钟前
12、用类写出更可控、更易扩展的爬虫框架🕷
后端·python
Baihai_IDP25 分钟前
vec2text 技术已开源!一定条件下,文本嵌入向量可“近乎完美地”还原
人工智能·面试·llm
江太翁29 分钟前
Pytorch torch
人工智能·pytorch·python
拓端研究室1 小时前
专题:2025即时零售与各类人群消费行为洞察报告|附400+份报告PDF、原数据表汇总下载
大数据·人工智能
网安INF1 小时前
深度学习中的逻辑回归:从原理到Python实现
人工智能·python·深度学习·算法·逻辑回归