读《Shape-Guided: Shape-Guided Dual-Memory Learning for 3D Anomaly Detection》

Chu Y M, Chieh L, Hsieh T I, et al. Shape-Guided Dual-Memory Learning for 3D Anomaly Detection[J]. 2023.(为毛paperwithcode上面曾经的榜一引用却只有1)

摘要

专家学习

无监督

第一个专家:局部几何,距离建模

第二个专家:2DRGB,局部颜色外观

引言

虽然在大多数情况下,颜色信息通常足以定位异常,但也已经表明,当充分使用3D几何信息时,有利于实现更好的性能(Horwitz&Hoshen,2022)

(关于PRO这个指标,我的理解是相比起交并比,PRO是直接计算预测比上真实,作为重叠率,然后类似auc那样计算各个阈值下的情况得到曲线再计算面积)

方法

根据相关工作中的观点,重点提取点云中的旋转不变特征隐式表示 ,通过符号距离函数对找到粒度的 3D 局部结构进行建模

以及颜色外观和几何坐标的双专家聚合

3D

重点是局部几何来考察3D信息,一是因为异常只在局部,二是因为局部点云信息可扩展(?)

用PointNet (Qi et al., 2017) 和神经隐函数 (NIF) (Ma et al., 2022),用于点云应用以探索 3D 形状信息。具体来说,我们首先将一个完整的点云划分为3D块并进行局部表示学习。对于每个生成的补丁,我们对 500 个点进行采样并应用 PointNet 来获得其特征向量(这和之前研究3d数据的体素方法有啥区别)

区别于传统的3D数据体素化方法,这种做法不是将3D数据转换为固定的网格结构,而是直接在点云上操作,保持了数据的原始形式和丰富的几何细节。体素化通常涉及将连续的几何空间离散化为固定分辨率的网格,这可能会导致几何信息的损失。而PointNet和NIF允许从原始点云直接学习,可以更好地捕捉细节和局部结构,这对于异常检测特别重要,因为异常通常是通过细微的局部变化来识别的。(类似图神经网络吗)

2D

(我的理解就是拿点云中"拓扑化的体素"单元与2d图像中的像素patch块做特征对齐,然后类似一种双模态的融合)

(听说这个memory bank最近在异常检测等领域很火,但我的理解这不就是一个空间换时间的内存特征数据库嘛,随时提供正常特征作为模板来检索比对。而且还和模型一起保存下来?融入作为模型的一部分?不然推理时怎么比对嘛,那么这样的话感觉领域针对性好强,也太不够通用了吧)

实验

点云的分块甚至是预处理之间的,PointNet和NIF模型这两个冻结的玩意也是这里用patch训练的,所以有选型实验(但是这就有点那啥)

感觉有点怪,怪不得引用量不高?赶紧再看看代码

相关推荐
Hali_Botebie18 小时前
【蒸馏(1)】UniDistill:用于BEV 3D检测的通用跨模态蒸馏框架!
3d
MediaTea18 小时前
Ae 效果详解:3D 通道提取
3d
3DVisionary18 小时前
XTOP3D的DIC技术在极端条件下的应用解决方案
数码相机·3d·航空工业·全场应变测量·航空机匣内部四测头同步测量·反射镜辅助dic观测·四测头方案
吃个糖糖21 小时前
Halcon 3D加快表面匹配速度
3d
mirrornan2 天前
3D全景沉浸式看车:虚拟现实重构汽车消费新体验
科技·3d·汽车·vr·3d数字化·3d看车
pixle02 天前
Three.js 快速入门教程【一】开启你的 3D Web 开发之旅
前端·javascript·3d
视觉人机器视觉2 天前
机器视觉中的3D高反光工件检测
人工智能·3d·c#·视觉检测
mirrornan3 天前
从建模到展示,如何实现3D在线预览展示?
3d
3D小将3 天前
STL 在线转 3MF,开启 3D 模型转换新体验
3d·3d格式转换
视觉人机器视觉3 天前
3D与2D机器视觉机械臂引导的区别
人工智能·数码相机·计算机视觉·3d·视觉检测