cpp
复制代码
#include <iostream>
#include <opencv2/opencv.hpp>
using namespace cv;
using namespace std;
string rootdir = "F:/Study/opencv/opencv-4.8.0/opencv/sources/samples/data/";
void sort_box(vector<Rect> &boxes) {
int size = boxes.size();
for (int i = 0; i < size - 1; i++) {
for (int j = i; j < size; j++) {
int x = boxes[j].x;
int y = boxes[j].y;
if (y < boxes[i].y) {
Rect temp = boxes[i];
boxes[i] = boxes[j];
boxes[j] = temp;
}
}
}
}
void detect_defect(Mat &binary, vector<Rect> rects, vector<Rect> &defect, Mat &tpl) {
int h = tpl.rows;
int w = tpl.cols;
int size = rects.size();
for (int i = 0; i < size; i++) {
// 构建diff
Mat roi = binary(rects[i]);
resize(roi, roi, tpl.size());
Mat mask;
subtract(tpl, roi, mask);
Mat se = getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1, -1));
morphologyEx(mask, mask, MORPH_OPEN, se);
threshold(mask, mask, 0, 255, THRESH_BINARY);
//imshow("mask", mask);
//waitKey(0);*/
// 根据diff查找缺陷,阈值化
int count = 0;
for (int row = 0; row < h; row++) {
for (int col = 0; col < w; col++) {
int pv = mask.at<uchar>(row, col);
if (pv == 255) {
count++;
}
}
}
// 填充一个像素宽
int mh = mask.rows + 2;
int mw = mask.cols + 2;
Mat m1 = Mat::zeros(Size(mw, mh), mask.type());
Rect mroi;
mroi.x = 1;
mroi.y = 1;
mroi.height = mask.rows;
mroi.width = mask.cols;
mask.copyTo(m1(mroi));
/*imshow("mask2", mask);
imshow("ml", m1);*/
waitKey(0);
// 轮廓分析
vector<vector<Point>> contours;
vector<Vec4i> hierarchy;
findContours(m1, contours, hierarchy, RETR_LIST, CHAIN_APPROX_SIMPLE);
bool find = false;
for (size_t t = 0; t < contours.size(); t++) {
Rect rect = boundingRect(contours[t]);
float ratio = (float)rect.width / ((float)rect.height);
if (ratio > 4.0 && (rect.y < 5 || (m1.rows - (rect.height + rect.y)) < 10)) {
continue;
}
double area = contourArea(contours[t]);
if (area > 10) {
printf("ratio : %.2f, area : %.2f \n", ratio, area);
find = true;
}
}
if (count > 50 && find) {
printf("count : %d \n", count);
defect.push_back(rects[i]);
}
}
}
void multiple_defects_detection(Mat &src) {
Mat tpl = imread(rootdir + "dt.png", IMREAD_GRAYSCALE);
// 图像二值化
Mat gray, binary;
cvtColor(src, gray, COLOR_BGR2GRAY);
threshold(gray, binary, 0, 255, THRESH_BINARY_INV | THRESH_OTSU);
imshow("binary", binary);
imwrite("D:/binary.png", binary);
// 定义结构元素
Mat se = getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1, -1));
morphologyEx(binary, binary, MORPH_OPEN, se);
// 轮廓发现
vector<vector<Point>> contours;
vector<Vec4i> hierarchy;
vector<Rect> rects;
findContours(binary, contours, hierarchy, RETR_LIST, CHAIN_APPROX_SIMPLE);
int height = src.rows;
for (size_t t = 0; t < contours.size(); t++) {
Rect rect = boundingRect(contours[t]);
double area = contourArea(contours[t]);
if (rect.height > (height / 2)) {
continue;
}
if (area < 150) {
continue;
}
/*imshow("roi", binary(rect));
waitKey(0);*/
rects.push_back(rect);
}
// 对每个刀片进行比对检测
sort_box(rects);
vector<Rect> defects;
detect_defect(binary, rects, defects, tpl);
// 显示检测结果
for (int i = 0; i < defects.size(); i++) {
rectangle(src, defects[i], Scalar(0, 0, 255), 2, 8, 0);
putText(src, "bad", defects[i].tl(), FONT_HERSHEY_SIMPLEX, 1.0, Scalar(255, 0, 0), 2, 8);
}
imshow("多个缺陷检测", src);
waitKey(0);
}
int main() {
Mat src=imread(rootdir+"ce_01.jpg");
multiple_defects_detection(src);
return 0;
}
cpp
复制代码
#include<opencv2/opencv.hpp>
#include<iostream>
using namespace cv;
using namespace std;
string model_dir="F:/Study/opencv/opencv-4.8.0/opencv/sources/samples/data/";
void resnet_surface_detection(Mat &image) {
String defect_labels[] = { "In","Sc","Cr","PS","RS","Pa" };
dnn::Net net = dnn::readNetFromONNX(model_dir + "surface_defect_resnet18.onnx");
Mat inputBlob = dnn::blobFromImage(image, 0.00392, Size(200, 200), Scalar(127, 127, 127), false, false);
inputBlob /= 0.5;
// 执行图像分类
Mat prob;
net.setInput(inputBlob);
prob = net.forward();
// 得到最可能分类输出
Mat probMat = prob.reshape(1, 1);
Point classNumber;
double classProb;
minMaxLoc(probMat, NULL, &classProb, NULL, &classNumber);
int classidx = classNumber.x;
printf("\n current image classification : %s, possible : %.2f\n", defect_labels[classidx].c_str(), classProb);
// 显示文本
putText(image, defect_labels[classidx].c_str(), Point(20, 40), FONT_HERSHEY_SIMPLEX, 1.0, Scalar(0, 0, 255), 2, 8);
imshow("基于分类的缺陷检测", image);
waitKey(0);
}
int main() {
Mat image = imread("F:/Study/opencv/opencv-4.8.0/opencv/sources/samples/data/NEU-CLS/NEU-CLS/Ps_1.bmp");
resnet_surface_detection(image);
return 0;
}