Krylov matrix

Krylov矩阵是一种在数值线性代数中使用的矩阵,尤其是在迭代解法中用于求解线性方程组、特征值问题和其他线性代数问题。它是由俄国数学家阿列克谢·尼古拉耶维奇·克雷洛夫(Alexei Nikolaevich Krylov)的名字命名的。

Krylov子空间由以下形式的矩阵生成:
K ( A , v ) = { v , A v , A 2 v , ... , A m − 1 v } K(A, \mathbf{v}) = \{\mathbf{v}, A\mathbf{v}, A^2\mathbf{v}, \dots, A^{m-1}\mathbf{v}\} K(A,v)={v,Av,A2v,...,Am−1v}

其中 A A A是一个 n × n n \times n n×n方阵, v \mathbf{v} v 是一个 n n n 维向量, m m m通常远小于 n n n。这些向量可以被看作是通过不断地将矩阵 A A A 应用于向量 v \mathbf{v} v 来生成的。所生成的Krylov矩阵可以表达为:
K m = [ v , A v , A 2 v , ... , A m − 1 v ] K_m = [\mathbf{v}, A\mathbf{v}, A^2\mathbf{v}, \dots, A^{m-1}\mathbf{v}] Km=[v,Av,A2v,...,Am−1v]

在这个定义中,每个 A i v A^i\mathbf{v} Aiv被称为Krylov矩阵的一列,这个矩阵的列跨越了 A A A的一个Krylov子空间。

Krylov矩阵在迭代方法中非常重要,因为它们与系统的特征值和特征向量有紧密的联系,并且能够在没有完整解决问题的情况下提供有用的近似信息。例如,Krylov子空间方法,如共轭梯度法(用于对称正定矩阵)和GMRES(Generalized Minimal Residual Method,用于非对称问题),就是基于构建这种类型的子空间来迭代地逼近线性方程组 A x = b Ax = b Ax=b的解。

简而言之,Krylov矩阵和子空间为解决大型稀疏矩阵问题提供了一种高效的计算方法,广泛应用于科学计算和工程领域。

相关推荐
爱学习的小鱼gogo1 小时前
python 单词搜索(回溯-矩阵-字符串-中等)含源码(二十)
开发语言·数据结构·python·矩阵·字符串·回溯·递归栈
熬了夜的程序员5 小时前
【LeetCode】82. 删除排序链表中的重复元素 II
数据结构·算法·leetcode·链表·职场和发展·矩阵·深度优先
前端小L6 小时前
动态规划的“降维”艺术:二维矩阵中的建筑奇迹——最大矩形
线性代数·矩阵
小龙7 小时前
【理论知识】Q/K/V权重矩阵学习笔记
矩阵·大模型·transformer·多头注意力机制·理论基础
无限进步_8 小时前
【C语言】在矩阵中高效查找数字的算法解析
c语言·开发语言·数据结构·c++·其他·算法·矩阵
张晓~183399481211 天前
碰一碰发抖音源码技术搭建部署方案
线性代数·算法·microsoft·矩阵·html5
dxnb221 天前
Datawhale25年10月组队学习:math for AI+Task3线性代数(下)
人工智能·学习·线性代数
woshihonghonga1 天前
PyTorch矩阵乘法函数区别解析与矩阵高级索引说明——《动手学深度学习》3.6.3、3.6.4和3.6.5 (P79)
人工智能·pytorch·python·深度学习·jupyter·矩阵
CLubiy1 天前
【研究生随笔】Pytorch中的线性代数(微分)
人工智能·pytorch·深度学习·线性代数·梯度·微分
郝学胜-神的一滴1 天前
矩阵的奇异值分解(SVD)及其在计算机图形学中的应用
程序人生·线性代数·算法·矩阵·图形渲染