【牛客】SQL123 SQL类别高难度试卷得分的截断平均值

描述

牛客的运营同学想要查看大家在SQL类别中高难度试卷的得分情况。

请你帮她从exam_record数据表中计算所有用户完成SQL类别高难度试卷得分的截断平均值(去掉一个最大值和一个最小值后的平均值)。

示例数据:examination_info(exam_id试卷ID, tag试卷类别, difficulty试卷难度, duration考试时长, release_time发布时间)

|----|---------|-----|------------|----------|---------------------|
| id | exam_id | tag | difficulty | duration | release_time |
| 1 | 9001 | SQL | hard | 60 | 2020-01-01 10:00:00 |
| 2 | 9002 | 算法 | medium | 80 | 2020-08-02 10:00:00 |

示例数据:exam_record(uid用户ID, exam_id试卷ID, start_time开始作答时间, submit_time交卷时间, score得分)

|----|------|---------|---------------------|---------------------|--------|
| id | uid | exam_id | start_time | submit_time | score |
| 1 | 1001 | 9001 | 2020-01-02 09:01:01 | 2020-01-02 09:21:01 | 80 |
| 2 | 1001 | 9001 | 2021-05-02 10:01:01 | 2021-05-02 10:30:01 | 81 |
| 3 | 1001 | 9001 | 2021-06-02 19:01:01 | 2021-06-02 19:31:01 | 84 |
| 4 | 1001 | 9002 | 2021-09-05 19:01:01 | 2021-09-05 19:40:01 | 89 |
| 5 | 1001 | 9001 | 2021-09-02 12:01:01 | (NULL) | (NULL) |
| 6 | 1001 | 9002 | 2021-09-01 12:01:01 | (NULL) | (NULL) |
| 7 | 1002 | 9002 | 2021-02-02 19:01:01 | 2021-02-02 19:30:01 | 87 |
| 8 | 1002 | 9001 | 2021-05-05 18:01:01 | 2021-05-05 18:59:02 | 90 |
| 9 | 1003 | 9001 | 2021-09-07 12:01:01 | 2021-09-07 10:31:01 | 50 |
| 10 | 1004 | 9001 | 2021-09-06 10:01:01 | (NULL) | (NULL) |

根据输入你的查询结果如下:

|-----|------------|----------------|
| tag | difficulty | clip_avg_score |
| SQL | hard | 81.7 |

从examination_info表可知,试卷9001为高难度SQL试卷,该试卷被作答的得分有[80,81,84,90,50],去除最高分和最低分后为[80,81,84],平均分为81.6666667,保留一位小数后为81.7

输入描述:

输入数据中至少有3个有效分数

sql 复制代码
with cte as (
    select exam_id,score,tag,difficulty,
    dense_rank() over (partition by exam_id order by score) as rnk1,
    dense_rank() over (partition by exam_id order by score desc) as rnk2
    from 
    exam_record left join examination_info using (exam_id)
    where score is not null and tag = 'SQL'and difficulty = 'hard'
)

select tag,difficulty,
round(avg(score),1) as clip_avg_score
from cte
where score between 
(select score from cte where rnk1=2) 
and (select score from cte where rnk2=2)
group by tag,difficulty

或:

sql 复制代码
with cte as (
    select exam_id,score,tag,difficulty,
    dense_rank() over (partition by exam_id order by score) as rnk1,
    dense_rank() over (partition by exam_id order by score desc) as rnk2
    from 
    exam_record left join examination_info using (exam_id)
    where score is not null and tag = 'SQL'and difficulty = 'hard'
)

select tag,difficulty,
round(avg(score),1) as clip_avg_score
from cte
where rnk1!=1 and rnk2!=1
group by tag,difficulty
相关推荐
Microsoft Word35 分钟前
向量数据库与RAG
数据库·人工智能·向量数据库·rag
位步1 小时前
在linux系统中使用通用包安装 Mysql
android·linux·mysql
艾德金的溪1 小时前
redis-7.4.6部署安装
前端·数据库·redis·缓存
小光学长2 小时前
基于Vue的2025年哈尔滨亚冬会志愿者管理系统5zqg6m36(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。
前端·数据库·vue.js
小陈永不服输2 小时前
MySQL覆盖索引深度解析:从原理到实践的性能优化之道
mysql
我的offer在哪里3 小时前
Redis
数据库·redis·缓存
点灯小铭3 小时前
基于单片机的多模式自动洗衣机设计与实现
数据库·单片机·嵌入式硬件·毕业设计·课程设计
潜心编码3 小时前
基于python的仓库管理系统
数据库
herinspace3 小时前
如何设置电脑分辨率和显示缩放
服务器·数据库·智能手机·电脑