【牛客】SQL123 SQL类别高难度试卷得分的截断平均值

描述

牛客的运营同学想要查看大家在SQL类别中高难度试卷的得分情况。

请你帮她从exam_record数据表中计算所有用户完成SQL类别高难度试卷得分的截断平均值(去掉一个最大值和一个最小值后的平均值)。

示例数据:examination_info(exam_id试卷ID, tag试卷类别, difficulty试卷难度, duration考试时长, release_time发布时间)

|----|---------|-----|------------|----------|---------------------|
| id | exam_id | tag | difficulty | duration | release_time |
| 1 | 9001 | SQL | hard | 60 | 2020-01-01 10:00:00 |
| 2 | 9002 | 算法 | medium | 80 | 2020-08-02 10:00:00 |

示例数据:exam_record(uid用户ID, exam_id试卷ID, start_time开始作答时间, submit_time交卷时间, score得分)

|----|------|---------|---------------------|---------------------|--------|
| id | uid | exam_id | start_time | submit_time | score |
| 1 | 1001 | 9001 | 2020-01-02 09:01:01 | 2020-01-02 09:21:01 | 80 |
| 2 | 1001 | 9001 | 2021-05-02 10:01:01 | 2021-05-02 10:30:01 | 81 |
| 3 | 1001 | 9001 | 2021-06-02 19:01:01 | 2021-06-02 19:31:01 | 84 |
| 4 | 1001 | 9002 | 2021-09-05 19:01:01 | 2021-09-05 19:40:01 | 89 |
| 5 | 1001 | 9001 | 2021-09-02 12:01:01 | (NULL) | (NULL) |
| 6 | 1001 | 9002 | 2021-09-01 12:01:01 | (NULL) | (NULL) |
| 7 | 1002 | 9002 | 2021-02-02 19:01:01 | 2021-02-02 19:30:01 | 87 |
| 8 | 1002 | 9001 | 2021-05-05 18:01:01 | 2021-05-05 18:59:02 | 90 |
| 9 | 1003 | 9001 | 2021-09-07 12:01:01 | 2021-09-07 10:31:01 | 50 |
| 10 | 1004 | 9001 | 2021-09-06 10:01:01 | (NULL) | (NULL) |

根据输入你的查询结果如下:

|-----|------------|----------------|
| tag | difficulty | clip_avg_score |
| SQL | hard | 81.7 |

从examination_info表可知,试卷9001为高难度SQL试卷,该试卷被作答的得分有[80,81,84,90,50],去除最高分和最低分后为[80,81,84],平均分为81.6666667,保留一位小数后为81.7

输入描述:

输入数据中至少有3个有效分数

sql 复制代码
with cte as (
    select exam_id,score,tag,difficulty,
    dense_rank() over (partition by exam_id order by score) as rnk1,
    dense_rank() over (partition by exam_id order by score desc) as rnk2
    from 
    exam_record left join examination_info using (exam_id)
    where score is not null and tag = 'SQL'and difficulty = 'hard'
)

select tag,difficulty,
round(avg(score),1) as clip_avg_score
from cte
where score between 
(select score from cte where rnk1=2) 
and (select score from cte where rnk2=2)
group by tag,difficulty

或:

sql 复制代码
with cte as (
    select exam_id,score,tag,difficulty,
    dense_rank() over (partition by exam_id order by score) as rnk1,
    dense_rank() over (partition by exam_id order by score desc) as rnk2
    from 
    exam_record left join examination_info using (exam_id)
    where score is not null and tag = 'SQL'and difficulty = 'hard'
)

select tag,difficulty,
round(avg(score),1) as clip_avg_score
from cte
where rnk1!=1 and rnk2!=1
group by tag,difficulty
相关推荐
AI 嗯啦1 小时前
SQL详细语法教程(七)核心优化
数据库·人工智能·sql
@蓝眼睛1 小时前
mac的m3芯片安装mysql
mysql·macos
ClouGence2 小时前
三步搞定!GaussDB 实时数据入仓
数据库·后端
冰块的旅行2 小时前
MySQL 的时区问题
mysql
舒一笑3 小时前
如何优雅统计知识库文件个数与子集下不同文件夹文件个数
后端·mysql·程序员
鼠鼠我捏,要死了捏3 小时前
生产环境MongoDB分片策略优化与故障排查实战经验分享
数据库·mongodb·分片
KaiwuDB4 小时前
KWDB 分布式架构探究——数据分布与特性
数据库·分布式
笨蛋不要掉眼泪4 小时前
Spring Boot集成腾讯云人脸识别实现智能小区门禁系统
java·数据库·spring boot
Leiwenti5 小时前
MySQL高阶篇-数据库优化
数据结构·数据库·mysql
你的电影很有趣5 小时前
lesson44:Redis 数据库全解析:从数据类型到高级应用
数据库·redis·缓存