[回归指标]R2、PCC(Pearson’s r )

R2相关系数

R2相关系数很熟悉了,就不具体解释了。

皮尔逊相关系数(PCC)

皮尔逊相关系数是研究变量之间线性相关程度的量,R方和PCC是不同的指标。R方衡量x和y的接近程度,PCC衡量的是x和y的变化趋势是否相同。R方是不对称关系,PCC是对称关系。

皮尔逊相关系数小结

  • Pearson's r 只适用于线性数据。

  • 看下面的图。它们清楚地展示了一种看似非随机的关系,但是 Pearson's r 非常接近于零。

  • 原因是因为这些图中的变量具有非线性关系。

  • 我们通常可以将两个变量之间的关系描绘成一个点云,分散在一条线的两侧。点云的分散度越大,数据越「嘈杂」,关系越弱。

  • 然而,由于它将每个单独的数据点与整体平均值进行比较,所以 Pearson's r 只考虑直线。这意味着检测非线性关系并不是很好。

  • 在上面的图中,Pearson's r 并没有显示研究对象的相关性。

  • 然而,这些变量之间的关系很显然是非随机的。幸运的是,我们有不同的相关性方法。

相关推荐
北京耐用通信2 分钟前
“耐达讯自动化Profibus总线光端机在化工变频泵控制系统中的应用与价值解析”
人工智能·科技·物联网·网络安全·自动化·信息与通信
2401_865854883 分钟前
AI软件可以帮助我自动化哪些日常任务?
运维·人工智能·自动化
WWZZ20251 小时前
快速上手大模型:深度学习7(实践:卷积层)
人工智能·深度学习·算法·机器人·大模型·卷积神经网络·具身智能
简佐义的博客1 小时前
Genome Biol. IF 9.4 Q1 | ATAC-seq 数据分析实用指南,根据本文就可以构建ATAC生信分析流程了
人工智能
老蒋新思维2 小时前
陈修超入局:解锁 AI 与 IP 融合的创新增长密码
网络·人工智能·网络协议·tcp/ip·企业管理·知识付费·创客匠人
San30.2 小时前
从代码规范到 AI Agent:现代前端开发的智能化演进
javascript·人工智能·代码规范
DO_Community2 小时前
基于AI Agent模板:快速生成 SQL 测试数据
人工智能·python·sql·ai·llm·ai编程
HeteroCat2 小时前
关于No Chatbot的思考
人工智能
咚咚王者2 小时前
人工智能之数据分析 numpy:第一章 学习链路
人工智能·数据分析·numpy
中杯可乐多加冰2 小时前
数据分析案例详解:基于smardaten实现智慧交通运营指标数据分析展示
人工智能·低代码·数据分析·交通物流·智慧交通·无代码·大屏端