[回归指标]R2、PCC(Pearson’s r )

R2相关系数

R2相关系数很熟悉了,就不具体解释了。

皮尔逊相关系数(PCC)

皮尔逊相关系数是研究变量之间线性相关程度的量,R方和PCC是不同的指标。R方衡量x和y的接近程度,PCC衡量的是x和y的变化趋势是否相同。R方是不对称关系,PCC是对称关系。

皮尔逊相关系数小结

  • Pearson's r 只适用于线性数据。

  • 看下面的图。它们清楚地展示了一种看似非随机的关系,但是 Pearson's r 非常接近于零。

  • 原因是因为这些图中的变量具有非线性关系。

  • 我们通常可以将两个变量之间的关系描绘成一个点云,分散在一条线的两侧。点云的分散度越大,数据越「嘈杂」,关系越弱。

  • 然而,由于它将每个单独的数据点与整体平均值进行比较,所以 Pearson's r 只考虑直线。这意味着检测非线性关系并不是很好。

  • 在上面的图中,Pearson's r 并没有显示研究对象的相关性。

  • 然而,这些变量之间的关系很显然是非随机的。幸运的是,我们有不同的相关性方法。

相关推荐
多云的夏天2 分钟前
AI(14)-prompt
人工智能
高力士等十万人8 分钟前
OpenCV对比度增强
人工智能·python·opencv
2501_9071368210 分钟前
Office和WPS中使用deepseek,解决出错问题,生成速度极快,一站式AI处理文档
人工智能·wps
黑尾土拨鼠11 分钟前
WPS接入私有化DeepSeek大语言模型
人工智能·语言模型·wps
不一样的信息安全1 小时前
深入解析DeepSeek智慧城市应用中的交通流量预测API接口
人工智能
给生活加糖!1 小时前
智能交通系统(Intelligent Transportation Systems):智慧城市中的交通革新
网络·人工智能·智慧城市
可为测控1 小时前
图像处理基础(3):均值滤波器及其变种
图像处理·人工智能·均值算法
刘立军1 小时前
本地大模型编程实战(20)用langgraph和智能体实现RAG(Retrieval Augmented Generation,检索增强生成)(4)
人工智能·后端·llm
Abdullah al-Sa1 小时前
Docker教程(喂饭级!)
c++·人工智能·docker·容器
神经星星1 小时前
无机材料逆合成效率飙升,韩国团队推出Retrieval-Retro,成果入选NeurIPS 2024
人工智能·深度学习·机器学习