[回归指标]R2、PCC(Pearson’s r )

R2相关系数

R2相关系数很熟悉了,就不具体解释了。

皮尔逊相关系数(PCC)

皮尔逊相关系数是研究变量之间线性相关程度的量,R方和PCC是不同的指标。R方衡量x和y的接近程度,PCC衡量的是x和y的变化趋势是否相同。R方是不对称关系,PCC是对称关系。

皮尔逊相关系数小结

  • Pearson's r 只适用于线性数据。

  • 看下面的图。它们清楚地展示了一种看似非随机的关系,但是 Pearson's r 非常接近于零。

  • 原因是因为这些图中的变量具有非线性关系。

  • 我们通常可以将两个变量之间的关系描绘成一个点云,分散在一条线的两侧。点云的分散度越大,数据越「嘈杂」,关系越弱。

  • 然而,由于它将每个单独的数据点与整体平均值进行比较,所以 Pearson's r 只考虑直线。这意味着检测非线性关系并不是很好。

  • 在上面的图中,Pearson's r 并没有显示研究对象的相关性。

  • 然而,这些变量之间的关系很显然是非随机的。幸运的是,我们有不同的相关性方法。

相关推荐
147API3 分钟前
60,000 星的代价:解析 OpenClaw 的架构设计与安全教训
人工智能·安全·aigc·clawdbot·moltbot·openclaw
audyxiao0015 分钟前
智能交通顶刊TITS论文分享|如何利用驾驶感知世界模型实现无信号灯路口自动驾驶?
人工智能·机器学习·自动驾驶·tits
lisw0510 分钟前
氛围炒股概述!
大数据·人工智能·机器学习
hjs_deeplearning11 分钟前
文献阅读篇#16:自动驾驶中的视觉语言模型:综述与展望
人工智能·语言模型·自动驾驶
爱喝可乐的老王1 小时前
PyTorch深度学习参数初始化和正则化
人工智能·pytorch·深度学习
杭州泽沃电子科技有限公司4 小时前
为电气风险定价:如何利用监测数据评估工厂的“电气安全风险指数”?
人工智能·安全
Godspeed Zhao6 小时前
自动驾驶中的传感器技术24.3——Camera(18)
人工智能·机器学习·自动驾驶
顾北127 小时前
MCP协议实战|Spring AI + 高德地图工具集成教程
人工智能
wfeqhfxz25887827 小时前
毒蝇伞品种识别与分类_Centernet模型优化实战
人工智能·分类·数据挖掘
中杯可乐多加冰8 小时前
RAG 深度实践系列(七):从“能用”到“好用”——RAG 系统优化与效果评估
人工智能·大模型·llm·大语言模型·rag·检索增强生成