[回归指标]R2、PCC(Pearson’s r )

R2相关系数

R2相关系数很熟悉了,就不具体解释了。

皮尔逊相关系数(PCC)

皮尔逊相关系数是研究变量之间线性相关程度的量,R方和PCC是不同的指标。R方衡量x和y的接近程度,PCC衡量的是x和y的变化趋势是否相同。R方是不对称关系,PCC是对称关系。

皮尔逊相关系数小结

  • Pearson's r 只适用于线性数据。

  • 看下面的图。它们清楚地展示了一种看似非随机的关系,但是 Pearson's r 非常接近于零。

  • 原因是因为这些图中的变量具有非线性关系。

  • 我们通常可以将两个变量之间的关系描绘成一个点云,分散在一条线的两侧。点云的分散度越大,数据越「嘈杂」,关系越弱。

  • 然而,由于它将每个单独的数据点与整体平均值进行比较,所以 Pearson's r 只考虑直线。这意味着检测非线性关系并不是很好。

  • 在上面的图中,Pearson's r 并没有显示研究对象的相关性。

  • 然而,这些变量之间的关系很显然是非随机的。幸运的是,我们有不同的相关性方法。

相关推荐
B站计算机毕业设计超人17 小时前
计算机毕业设计Python知识图谱中华古诗词可视化 古诗词情感分析 古诗词智能问答系统 AI大模型自动写诗 大数据毕业设计(源码+LW文档+PPT+讲解)
大数据·人工智能·hadoop·python·机器学习·知识图谱·课程设计
玄同76517 小时前
Python「焚诀」:吞噬所有语法糖的终极修炼手册
开发语言·数据库·人工智能·python·postgresql·自然语言处理·nlp
cdut_suye17 小时前
解锁函数的魔力:Python 中的多值传递、灵活参数与无名之美
java·数据库·c++·人工智能·python·机器学习·热榜
CoCo的编程之路17 小时前
2026 前端效能革命:如何利用智能助手实现“光速”页面构建?深度横评
前端·人工智能·ai编程·comate·智能编程助手·文心快码baiducomate
UR的出不克17 小时前
基于机器学习的电力消耗预测系统实战
人工智能·机器学习
全栈开发圈17 小时前
干货分享|深度学习计算的FPGA优化思路
人工智能·深度学习·fpga开发
linmoo198617 小时前
Langchain4j 系列之二十九 - Guardrails之一
人工智能·langchain·langchain4j·guardrails
意疏17 小时前
Claude Code 安装全流程:从零到真正用起来
人工智能
AskHarries17 小时前
在 Windows 上使用 Python MCP 配置 Qoder CLI STDIO 服务教程
人工智能·adb·ai编程
lynn-fish18 小时前
AI标讯数据揭秘:电力电缆市场的竞争密码
人工智能·电网·储能·软件·光伏·电力·ai工具