[回归指标]R2、PCC(Pearson’s r )

R2相关系数

R2相关系数很熟悉了,就不具体解释了。

皮尔逊相关系数(PCC)

皮尔逊相关系数是研究变量之间线性相关程度的量,R方和PCC是不同的指标。R方衡量x和y的接近程度,PCC衡量的是x和y的变化趋势是否相同。R方是不对称关系,PCC是对称关系。

皮尔逊相关系数小结

  • Pearson's r 只适用于线性数据。

  • 看下面的图。它们清楚地展示了一种看似非随机的关系,但是 Pearson's r 非常接近于零。

  • 原因是因为这些图中的变量具有非线性关系。

  • 我们通常可以将两个变量之间的关系描绘成一个点云,分散在一条线的两侧。点云的分散度越大,数据越「嘈杂」,关系越弱。

  • 然而,由于它将每个单独的数据点与整体平均值进行比较,所以 Pearson's r 只考虑直线。这意味着检测非线性关系并不是很好。

  • 在上面的图中,Pearson's r 并没有显示研究对象的相关性。

  • 然而,这些变量之间的关系很显然是非随机的。幸运的是,我们有不同的相关性方法。

相关推荐
这张生成的图像能检测吗1 小时前
(论文速读)EfficientTrain++: 高效视觉骨干训练的通用课程学习
人工智能·深度学习·计算机视觉·训练方法
晚霞的不甘2 小时前
CANN:华为全栈AI计算框架的深度解析(终极扩展版 · 完整篇)
人工智能·华为
lisw054 小时前
6G频段与5G频段有何不同?
人工智能·机器学习
2501_941623326 小时前
人工智能赋能智慧农业互联网应用:智能种植、农业数据分析与产量优化实践探索》
大数据·人工智能
不爱吃糖的程序媛6 小时前
华为 CANN:昇腾 AI 的异构计算架构核心与开源生态解析
人工智能·华为·架构
AKAMAI7 小时前
从客户端自适应码率流媒体迁移到服务端自适应码率流媒体
人工智能·云计算
jinxinyuuuus7 小时前
GTA 风格 AI 生成器:跨IP融合中的“视觉语义冲突”与风格适配损失
人工智能·网络协议
如何原谅奋力过但无声7 小时前
TensorFlow 1.x常用函数总结(持续更新)
人工智能·python·tensorflow
翔云 OCR API7 小时前
人脸识别API开发者对接代码示例
开发语言·人工智能·python·计算机视觉·ocr