[回归指标]R2、PCC(Pearson’s r )

R2相关系数

R2相关系数很熟悉了,就不具体解释了。

皮尔逊相关系数(PCC)

皮尔逊相关系数是研究变量之间线性相关程度的量,R方和PCC是不同的指标。R方衡量x和y的接近程度,PCC衡量的是x和y的变化趋势是否相同。R方是不对称关系,PCC是对称关系。

皮尔逊相关系数小结

  • Pearson's r 只适用于线性数据。

  • 看下面的图。它们清楚地展示了一种看似非随机的关系,但是 Pearson's r 非常接近于零。

  • 原因是因为这些图中的变量具有非线性关系。

  • 我们通常可以将两个变量之间的关系描绘成一个点云,分散在一条线的两侧。点云的分散度越大,数据越「嘈杂」,关系越弱。

  • 然而,由于它将每个单独的数据点与整体平均值进行比较,所以 Pearson's r 只考虑直线。这意味着检测非线性关系并不是很好。

  • 在上面的图中,Pearson's r 并没有显示研究对象的相关性。

  • 然而,这些变量之间的关系很显然是非随机的。幸运的是,我们有不同的相关性方法。

相关推荐
wanping1582599234112 分钟前
AI Agent(学习六-FAISS 持久化到磁盘(重启不丢记忆))
人工智能·学习·faiss
童话名剑13 分钟前
序列模型与集束搜索(吴恩达深度学习笔记)
人工智能·笔记·深度学习·机器翻译·seq2seq·集束搜索·编码-解码模型
UI设计兰亭妙微28 分钟前
人工智能大模型管理平台UI设计
人工智能
发哥来了31 分钟前
主流AI视频生成商用方案选型评测:五大核心维度对比分析
大数据·人工智能
物联网APP开发从业者32 分钟前
2026年AI智能产品开发行业十大创新解决方案
人工智能
badfl1 小时前
VSCode Claude Code插件配置教程:使用、配置中转API、常见问题
人工智能·vscode·ai
Faker66363aaa1 小时前
指纹过滤器缺陷检测与分类 —— 基于MS-RCNN_X101-64x4d_FPN_1x_COCO模型的实现与分析_1
人工智能·目标跟踪·分类
金融小师妹1 小时前
基于LSTM-GARCH-EVT混合模型的贵金属极端波动解析:黄金白银双双反弹的逻辑验证
大数据·人工智能·深度学习·机器学习
代码匠心1 小时前
Trae IDE 隐藏玩法:接入即梦 AI,生成高质量大片!
人工智能·ai·trae·skills
陈天伟教授2 小时前
人工智能应用- 语言理解:01. 写作与对话
人工智能·深度学习·语音识别