55. 跳跃游戏
其实跳几步无所谓,关键在于可跳的覆盖范围!
不一定非要明确一次究竟跳几步,每次取最大的跳跃步数,这个就是可以跳跃的覆盖范围。
这个范围内,别管是怎么跳的,反正一定可以跳过来。
那么这个问题就转化为跳跃覆盖范围究竟可不可以覆盖到终点!
每次移动取最大跳跃步数(得到最大的覆盖范围),每移动一个单位,就更新最大覆盖范围。
贪心算法局部最优解:每次取最大跳跃步数(取最大覆盖范围),整体最优解:最后得到整体最大覆盖范围,看是否能到终点。
如图:
**i 每次移动只能在 cover 的范围内移动,**每移动一个元素,cover 得到该元素数值(新的覆盖范围)的补充,让 i 继续移动下去。
而 cover 每次只取 max(该元素数值补充后的范围, cover 本身范围)。
如果 cover 大于等于了终点下标,直接 return true 就可以了。
python
class Solution:
def canJump(self, nums: List[int]) -> bool:
cover = 0
if len(nums) == 1:
return True
for i in range(0,len(nums)):
if i <= cover:
cover = max(cover,i+nums[i])
if cover >= len(nums)-1:
return True
return False
45.跳跃游戏II
思路想不到
贪心的思路,局部最优:当前可移动距离尽可能多走,如果还没到终点,步数再加一。整体最优:一步尽可能多走,从而达到最少步数。
所以真正解题的时候,要从覆盖范围出发,不管怎么跳,覆盖范围内一定是可以跳到的,以最小的步数增加覆盖范围,覆盖范围一旦覆盖了终点,得到的就是最少步数!
这里需要统计两个覆盖范围,当前这一步的最大覆盖和下一步最大覆盖。
python
class Solution:
def jump(self, nums):
if len(nums) == 1:
return 0
cur_distance = 0 # 当前覆盖最远距离下标
ans = 0 # 记录走的最大步数
next_distance = 0 # 下一步覆盖最远距离下标
for i in range(len(nums)):
next_distance = max(nums[i] + i, next_distance) # 更新下一步覆盖最远距离下标
if i == cur_distance: # 遇到当前覆盖最远距离下标
ans += 1 # 需要走下一步
cur_distance = next_distance # 更新当前覆盖最远距离下标(相当于加油了)
if next_distance >= len(nums) - 1: # 当前覆盖最远距离达到数组末尾,不用再做ans++操作,直接结束
break
return ans