《PyTorch深度学习实践》第四讲反向传播

一、

1、

2、pytorch基本数据类型tensor,tensor中包含data和grad,其中grad为loss对data的偏导数

二、实例

python 复制代码
import torch

x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]

w = torch.tensor([1.0])  # w的初值为1.0
w.requires_grad = True  # 需要计算梯度


def forward(x):
    return x * w  # w是一个Tensor


def loss(x, y):
    y_pred = forward(x)
    return (y_pred - y) ** 2


print("predict (before training)", 4, forward(4).item())

for epoch in range(100):
    for x, y in zip(x_data, y_data):
        l = loss(x, y)  # l是一个张量,tensor主要是在建立计算图 forward, compute the loss
        l.backward()  # backward,compute grad for Tensor whose requires_grad set to True
        print('\tgrad:', x, y, w.grad.item())
        w.data = w.data - 0.01 * w.grad.data  # 权重更新时,注意grad也是一个tensor

        w.grad.data.zero_()  # after update, remember set the grad to zero

    print('progress:', epoch, l.item())  # 取出loss使用l.item,不要直接使用l(l是tensor会构建计算图)

print("predict (after training)", 4, forward(4).item())

1、w是Tensor, forward函数的返回值也是Tensor,loss函数的返回值也是Tensor

2、本算法中反向传播主要体现在,l.backward()。调用该方法后w.grad由None更新为Tensor类型,且w.grad.data的值用于后续w.data的更新。

l.backward()会把计算图中所有需要梯度(grad)的地方都会求出来,然后把梯度都存在对应的待求的参数中,最终计算图被释放。

取tensor中的data是不会构建计算图的。

第一轮:损失7.3

第100轮:损失9.0e-13

3、总结

第一步:计算loss

第二部:l.backward()做反向传播

第三步:由第二步得到梯度,做梯度下降算法,更新权重

三、

二次模型y=w1x²+w2x+b

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
import torch

x_data = [1.0,2.0,3.0]
y_data = [2.0,4.0,6.0]

w1 = torch.Tensor([1.0])#初始权值
w1.requires_grad = True#计算梯度,默认是不计算的
w2 = torch.Tensor([1.0])
w2.requires_grad = True
b = torch.Tensor([1.0])
b.requires_grad = True

def forward(x):
    return w1 * x**2 + w2 * x + b

def loss(x,y):#构建计算图
    y_pred = forward(x)
    return (y_pred-y) **2

print('Predict (befortraining)',4,forward(4))

for epoch in range(100):
    l = loss(1, 2)#为了在for循环之前定义l,以便之后的输出,无实际意义
    for x,y in zip(x_data,y_data):
        l = loss(x, y)
        l.backward()
        print('\tgrad:',x,y,w1.grad.item(),w2.grad.item(),b.grad.item())
        w1.data = w1.data - 0.01*w1.grad.data #注意这里的grad是一个tensor,所以要取他的data
        w2.data = w2.data - 0.01 * w2.grad.data
        b.data = b.data - 0.01 * b.grad.data
        w1.grad.data.zero_() #释放之前计算的梯度
        w2.grad.data.zero_()
        b.grad.data.zero_()
    print('Epoch:',epoch,l.item())

print('Predict(after training)',4,forward(4).item())
相关推荐
siliconstorm.ai4 小时前
OpenAI与微软“再造合作”:重组背后的资本与生态博弈
人工智能·microsoft
张较瘦_4 小时前
[论文阅读] 告别“数量为王”:双轨道会议模型+LS,破解AI时代学术交流困局
论文阅读·人工智能
nju_spy4 小时前
GPT 系列论文1-2 两阶段半监督 + zero-shot prompt
人工智能·gpt·nlp·大语言模型·zero-shot·transformer架构·半监督训练
芝麻开门-新起点4 小时前
第30章 零售与电商AI应用
人工智能·零售
shuidaoyuxing5 小时前
机器人检验报告包含内容
人工智能·机器人
南山二毛5 小时前
机器人控制器开发(训练到Jetson本地部署)
人工智能·机器人
工藤学编程5 小时前
零基础学AI大模型之AI大模型常见概念
人工智能
ACEEE12225 小时前
Stanford CS336 | Assignment 2 - FlashAttention-v2 Pytorch & Triotn实现
人工智能·pytorch·python·深度学习·机器学习·nlp·transformer
NG WING YIN5 小时前
Golang關於信件的
开发语言·深度学习·golang
金井PRATHAMA5 小时前
认知语义学中的象似性对人工智能自然语言处理深层语义分析的影响与启示
人工智能·自然语言处理·知识图谱