记一次SIMD指令优化计算的失败经历

原文连接:blog.fanscore.cn/a/56/

1. 前言

书接上回 《统计一个数字二进制位1的个数》,现在我们已经知道如何快速计算出一个int64数字的二进制位1的个数,那么回到我们最初的需求,我们的目的是快速统计一个bitmap中二进制位1的个数,假设我们使用[]uint64来实现bitmap,那么如果要统计这个bitmap中二进制位1的个数,我们可以遍历每个元素,计算出每个uint64元素二进制位1的个数,最后加起来,代码大概如下:

Go 复制代码
type Bitmap []uint64

func (bitmap Bitmap) OnesCount() (count int) {
	for _, v := range bitmap {
		count += OnesCount64(v)
	}

	return
}

const m0 = 0x5555555555555555 // 01010101 ...
const m1 = 0x3333333333333333 // 00110011 ...
const m2 = 0x0f0f0f0f0f0f0f0f // 00001111 ...

// 计算出x中二进制位1的个数,该函数上篇文章有详细解释,看不懂可以再回去看下
func OnesCount64(x uint64) int {
	const m = 1<<64 - 1
	x = x>>1&(m0&m) + x&(m0&m)
	x = x>>2&(m1&m) + x&(m1&m)
	x = (x>>4 + x) & (m2 & m)
	x += x >> 8
	x += x >> 16
	x += x >> 32
	return int(x) & (1<<7 - 1)
}

这种实现方式在bitmap元素过多,切片长度过长的情况下,计算十分耗时。那么如何优化这段代码呢?

2. 优化

现代CPU一般都支持SIMD指令,通过SIMD指令可以并行执行多个计算,以加法运算为例,如果我们要计算{A0,A1,A2,A3}四个数与{B0,B1,B2,B3}的和,不使用SIMD指令的话,需要挨个计算A0+B0A1+B1A2+B2A3+B3的和。使用SIMD指令的话,可以将{A0,A1,A2,A3}{A0,A1,A2,A3}四个数加载到xmm(128bit)/ymm(256bit)/zmm(512bit)寄存器中,然后使用一条指令就可以同时计算对应的和。这样理论上可以获得N倍的性能提升。

我们可以采用SIMD指令将OnesCount64函数并行化,并行计算4个uint64数字的结果,代码实现如下:

在popcnt.go文件中定义SimdPopcntQuad函数

Go 复制代码
package popcnt

func SimdPopcntQuad(nums [4]uint64) [4]uint64

在popcnt.s文件中我们使用汇编实现SimdPopcntQuad函数

Assembly 复制代码
#include "textflag.h"

TEXT ·SimdPopcntQuad(SB),NOSPLIT,$0-64
    VMOVDQU nums+0(FP), Y0 // Y0 = x,将四个uint64数字加载到Y0寄存器
    MOVQ $0x5555555555555555, AX
    MOVQ AX, X9
    VPBROADCASTQ X9, Y5 // Y5 = m0 // 上面三行代码将4个m0加载到Y5寄存器
    MOVQ $0x3333333333333333, AX
    MOVQ AX, X9
    VPBROADCASTQ X9, Y6 // Y6 = m1 // 上面三行代码将4个m1加载到Y6寄存器
    MOVQ $0x0f0f0f0f0f0f0f0f, AX
    MOVQ AX, X9
    VPBROADCASTQ X9, Y7 // Y7 = m2 // 上面三行代码将4个m2加载到Y7寄存器
    MOVQ $0x7f, AX
    MOVQ AX, X9
    VPBROADCASTQ X9, Y8 // Y8 = m;上面三行代码将4个m3加载到Y8寄存器
    VPSRLQ $1, Y0, Y1 // Y1 = x>>1;Y0寄存器上四个uint64数字并行右移1位
    VPAND Y1, Y5, Y1 // Y1 = x>>1&m0;Y1寄存器上四个uint64数字并行与Y5寄存器上的四个m0并行与,结果存到Y1寄存器
    VPAND Y0, Y5, Y2 // Y2 = x&m0
    VPADDQ Y1, Y2, Y0 // x = x>>1&m0 + x&m0
    VPSRLQ $2, Y0, Y1 // Y1 = x>>2
    VPAND Y1, Y6, Y1 // Y1 = x>>2&m1
    VPAND Y0, Y6, Y2 // Y2 = x&m1
    VPADDQ Y1, Y2, Y0 // x = x>>2&m1 + x&m1
    VPSRLQ $4, Y0, Y1 // Y1 = x>>4
    VPAND Y1, Y7, Y1 // Y1 = x>>4&m2
    VPAND Y0, Y7, Y2 // Y2 = x&m2
    VPADDQ Y1, Y2, Y0 // x = x>>2&m2 + x&m2
    VPSRLQ $8, Y0, Y1 // Y1 = x >> 8
    VPADDQ Y1, Y0, Y0 // x += x >> 8
    VPSRLQ $16, Y0, Y1 // Y1 = x >> 16
    VPADDQ Y1, Y0, Y0 // x += x >> 16
    VPSRLQ $32, Y0, Y1 // Y1 = x >> 32
    VPADDQ Y1, Y0, Y0 // x += x >> 32
    VPAND Y0, Y8, Y0 // x & (1<<7-1)
    VMOVDQU Y0, ret+32(FP) // 将结果加载到内存中返回值的位置
    RET

Benchmark

理论上讲如此优化之后我们应该可以获得四倍的性能提升,所以我们写个基准测试验证下:

Go 复制代码
// 优化之后的并行计算测试
func BenchmarkSimdPopcntQuad(b *testing.B) {
        // 使用随机数防止编译阶段被编译器预先计算出来
	rand.Seed(time.Now().UnixNano())
	nums := [4]uint64{rand.Uint64(), rand.Uint64(), rand.Uint64(), rand.Uint64()}
	for i := 0; i < b.N; i++ {
		SimdPopcntQuad(nums)
	}
}

// 优化之前的顺序计算测试
func BenchmarkSerial(b *testing.B) {
        // 使用随机数防止编译阶段被编译器预先计算出来
	rand.Seed(time.Now().UnixNano())
	nums := [4]uint64{rand.Uint64(), rand.Uint64(), rand.Uint64(), rand.Uint64()}
	for i := 0; i < b.N; i++ {
		serialPopcntQuad(nums)
	}
}

func serialPopcntQuad(nums [4]uint64) [4]uint64 {
	return [4]uint64{uint64(bits.OnesCount64(nums[0])), uint64(bits.OnesCount64(nums[1])), uint64(bits.OnesCount64(nums[2])), uint64(bits.OnesCount64(nums[3]))}
}

运行后结果如下

yaml 复制代码
# go test -bench=. -v
=== RUN   TestSimdPopcntQuad
--- PASS: TestSimdPopcntQuad (0.00s)
goos: linux
goarch: amd64
pkg: github.com/Orlion/popcnt
cpu: Intel Core Processor (Broadwell, no TSX)
BenchmarkSimdPopcntQuad
BenchmarkSimdPopcntQuad-8        3693530               330.8 ns/op
BenchmarkSerial
BenchmarkSerial-8               539924296                2.232 ns/op
PASS
ok      github.com/Orlion/popcnt        2.993s

可以看到优化后的并行计算比原始的顺序计算慢了150倍😭,失败~

3. 分析

虽然优化失败了,但是我们还是要分析复盘下其中的原因,从中汲取一些经验,下面我们从两方面来分析下。

3.1 未优化函数为什么快?

首先我们可以看到未优化的函数serialPopcntQuad计算四个数字竟然只花了2ns,根据Numbers Everyone Should Know一文,访存的时间大概是100ns,这就有点离谱了,计算竟然不从内存加载我们的参数?

下面我们写段main函数,使用随机数来调用下serialPopcntQuad函数,然后反汇编看下汇编代码分析下。

Go 复制代码
func main() {
	rand.Seed(time.Now().UnixNano())
	nums := [4]uint64{rand.Uint64(), rand.Uint64(), rand.Uint64(), rand.Uint64()}
	results := serialPopcntQuad(nums)
	fmt.Println(results)
}

func serialPopcntQuad(nums [4]uint64) [4]uint64 {
	return [4]uint64{uint64(bits.OnesCount64(nums[0])), uint64(bits.OnesCount64(nums[1])), uint64(bits.OnesCount64(nums[2])), uint64(bits.OnesCount64(nums[3]))}
}

编译后反汇编:

从汇编代码中可以看到在调用bits.OnesCount64之前会判断cpu是否支持popcnt指令,如果支持则使用popcnt指令来计算而不是调用bits.OnesCount64来计算,恰好我机器支持popcnt指令,省略了bits.OnesCount64中的一堆计算,因此计算速度非常快。

3.2 优化后为什么慢?

正如3.1中所提到的,相较于cpu计算,访存的代价是非常高的,大概是100ns,而我们汇编代码中为了使用SIMD指令实现统计算法有大量的访存操作。

受限于本人对汇编掌握程度,上面的汇编代码质量应该是很差的,并不能证明SIMD性能差,可能有性能更高的实现,请各位大佬指点。

而且当前Go汇编在不指定编译参数的情况下只能采用旧函数调用约定,必须采用内存传参,所以导致最终基准测试的结果很差。

4. 收获

这一通瞎折腾虽然最终结果失败,但还是有很多收获的。首先真实的体会到了访存有多慢,所以日后在进行性能优化时就会注意这一点,尽量使代码能命中CPU缓存。

再一个就是之前并没有使用过SIMD指令,也没有接触过这种级别的优化,这次算是入门了。

后端选手,水平有限,各位计算机科学家见笑了。

5. 参考资料

  1. 玩转SIMD指令编程
相关推荐
慕城南风1 天前
Go语言中的defer,panic,recover 与错误处理
golang·go
Crossoads2 天前
【汇编语言】端口 —— 「从端口到时间:一文了解CMOS RAM与汇编指令的交汇」
android·java·汇编·深度学习·网络协议·机器学习·汇编语言
桃园码工2 天前
1-Gin介绍与环境搭建 --[Gin 框架入门精讲与实战案例]
go·gin·环境搭建
云中谷2 天前
Golang 神器!go-decorator 一行注释搞定装饰器,v0.22版本发布
go·敏捷开发
苏三有春3 天前
五分钟学会如何在GitHub上自动化部署个人博客(hugo框架 + stack主题)
git·go·github
我是前端小学生3 天前
Go语言中的方法和函数
go
探索云原生4 天前
在 K8S 中创建 Pod 是如何使用到 GPU 的: nvidia device plugin 源码分析
ai·云原生·kubernetes·go·gpu
自在的LEE4 天前
当 Go 遇上 Windows:15.625ms 的时间更新困局
后端·kubernetes·go
Gvto5 天前
使用FakeSMTP创建本地SMTP服务器接收邮件具体实现。
go·smtp·mailtrap
白泽来了5 天前
【Go进阶】手写 Go websocket 库(一)|WebSocket 通信协议
开源·go