Python读取hbase数据库

1. hbase连接

首先用hbase shell 命令来进入到hbase数据库,然后用list命令来查看hbase下所有表,以其中表"DB_level0"为例,可以看到库名"baotouyiqi"是拼接的,python代码访问时先连接:

python 复制代码
def hbase_connection(hbase_master, hbase_port, table_prefix=None):
    connection = happybase.Connection(host=hbase_master, port=hbase_port, table_prefix=table_prefix)
    return connection
connection = hbase_connection(hbase_master, hbase_port, table_prefix)  # 在连接的时候创建项目空间
table = connection.table(tablename)  # 获取表连接

备注:完整代码在最后,想运行的直接滑倒最后复制即可

2. 按条件读取hbase数据

然后按照条件来查询表中想要的数据集,这里只列举两个条件:时间区间和指定列。同样,我们在shell下用scan命令来查看表中的数据结构:

可以看到第一列是ROW,第二列是COLUMN+CELL,python代码取数据方法差不多:

python 复制代码
date_prex_start = bytes('dt_' + starttime, encoding='utf-8')  # row_start
date_prex_end = bytes('dt_' + endtime, encoding='utf-8')  # row_stop
# 通过设置row key的前缀row_prefix参数来进行局部扫描
outdata = dict(table.scan(row_start=date_prex_start, row_stop=date_prex_end,
                          columns=[onecolumn]))

得到的结果如下,是个字典格式:

3. 按格式输出hbase数据结果

我们希望输出的结果是dataframe的,而且第一列是time,第二列是value,所以就做个简单格式处理:

python 复制代码
timesep = list(map(lambda x: x.decode('utf-8').replace('dt_', ''), outdata.keys()))
tempdata = list(outdata.values())
valuelist = list(map(lambda x: float(list(x.values())[0]), tempdata))
if len(timesep) > 0:
    db_data2 = pd.DataFrame({'时间': timesep, onecolumn: valuelist})
    db_data2.loc[:, '时间2'] = [i[:16] for i in db_data2['时间']]
    db_data2 = db_data2.drop_duplicates(subset=['时间2'], keep='last')  # 一分钟内多次数值取一个即可
else:
    db_data2 = pd.DataFrame()
if len(db_data2) < 1:
    return pd.DataFrame()
db_data2.loc[:, '时间戳'] = [time.mktime(time.strptime(i, "%Y-%m-%d %H:%M:%S")) for i in db_data2['时间']]
db_data2 = db_data2.sort_values(by=['时间戳'], ascending=False)  # 将最新的数值放最前面
db_data3 = db_data2.drop(columns=['时间2', '时间戳'])
db_data3.columns = ['time', 'value']

4. 完整代码(code)

python 复制代码
import happybase
import time
import pandas as pd
from pathlib import Path

os_file_name = Path(__file__).name


def hbase_connection(hbase_master, hbase_port, table_prefix=None):
    connection = happybase.Connection(host=hbase_master, port=hbase_port, table_prefix=table_prefix)
    return connection


def get_data_by_tum(hbase_master, hbase_port, table_prefix, tablename, columnslist, starttime, endtime):
    columnsid = '$'.join(columnslist)
    onecolumn = 'TimeSe:dt_' + columnsid  # column

    connection = hbase_connection(hbase_master, hbase_port, table_prefix)  # 在连接的时候创建项目空间
    table = connection.table(tablename)  # 获取表连接
    date_prex_start = bytes('dt_' + starttime, encoding='utf-8')  # row_start
    date_prex_end = bytes('dt_' + endtime, encoding='utf-8')  # row_stop
    # 通过设置row key的前缀row_prefix参数来进行局部扫描
    outdata = dict(table.scan(row_start=date_prex_start, row_stop=date_prex_end,
                              columns=[onecolumn]))

    timesep = list(map(lambda x: x.decode('utf-8').replace('dt_', ''), outdata.keys()))
    tempdata = list(outdata.values())
    valuelist = list(map(lambda x: float(list(x.values())[0]), tempdata))
    if len(timesep) > 0:
        db_data2 = pd.DataFrame({'时间': timesep, onecolumn: valuelist})
        db_data2.loc[:, '时间2'] = [i[:16] for i in db_data2['时间']]
        db_data2 = db_data2.drop_duplicates(subset=['时间2'], keep='last')  # 一分钟内多次数值取一个即可
    else:
        db_data2 = pd.DataFrame()
    if len(db_data2) < 1:
        return pd.DataFrame()
    db_data2.loc[:, '时间戳'] = [time.mktime(time.strptime(i, "%Y-%m-%d %H:%M:%S")) for i in db_data2['时间']]
    db_data2 = db_data2.sort_values(by=['时间戳'], ascending=False)  # 将最新的数值放最前面
    db_data3 = db_data2.drop(columns=['时间2', '时间戳'])
    db_data3.columns = ['time', 'value']
    return db_data3


if __name__ == '__main__':
    begin_time = '2023-08-22 00:00:00'
    end_time = '2023-08-23 00:00:00'
    hbase_master = "142.21.8.22"
    hbase_port = 9097
    table_prefix = "baotouyiqi"
    table_name = "DB_level0"
    onedata = ["62340", "20", "204"]
    dataget = get_data_by_tum(hbase_master, hbase_port, table_prefix, table_name,
                              onedata, begin_time, end_time)
    print(dataget)
相关推荐
CSXB998 分钟前
三十四、Python基础语法(文件操作-上)
开发语言·python·功能测试·测试工具
亚图跨际1 小时前
MATLAB和Python及R潜变量模型和降维
python·matlab·r语言·生物学·潜变量模型
IT古董1 小时前
【机器学习】决定系数(R²:Coefficient of Determination)
人工智能·python·机器学习
德育处主任Pro1 小时前
『Django』APIView基于类的用法
后端·python·django
Star Patrick1 小时前
算法训练(leetcode)二刷第十九天 | *39. 组合总和、*40. 组合总和 II、*131. 分割回文串
python·算法·leetcode
武子康2 小时前
大数据-213 数据挖掘 机器学习理论 - KMeans Python 实现 距离计算函数 质心函数 聚类函数
大数据·人工智能·python·机器学习·数据挖掘·scikit-learn·kmeans
写点什么啦2 小时前
使用R语言survminer获取生存分析高风险和低风险的最佳截断值cut-off
开发语言·python·r语言·生存分析·x-tile
武子康2 小时前
大数据-214 数据挖掘 机器学习理论 - KMeans Python 实现 算法验证 sklearn n_clusters labels
大数据·人工智能·python·深度学习·算法·机器学习·数据挖掘
封步宇AIGC3 小时前
量化交易系统开发-实时行情自动化交易-Okex K线数据
人工智能·python·机器学习·数据挖掘
封步宇AIGC3 小时前
量化交易系统开发-实时行情自动化交易-Okex交易数据
人工智能·python·机器学习·数据挖掘