Python读取hbase数据库

1. hbase连接

首先用hbase shell 命令来进入到hbase数据库,然后用list命令来查看hbase下所有表,以其中表"DB_level0"为例,可以看到库名"baotouyiqi"是拼接的,python代码访问时先连接:

python 复制代码
def hbase_connection(hbase_master, hbase_port, table_prefix=None):
    connection = happybase.Connection(host=hbase_master, port=hbase_port, table_prefix=table_prefix)
    return connection
connection = hbase_connection(hbase_master, hbase_port, table_prefix)  # 在连接的时候创建项目空间
table = connection.table(tablename)  # 获取表连接

备注:完整代码在最后,想运行的直接滑倒最后复制即可

2. 按条件读取hbase数据

然后按照条件来查询表中想要的数据集,这里只列举两个条件:时间区间和指定列。同样,我们在shell下用scan命令来查看表中的数据结构:

可以看到第一列是ROW,第二列是COLUMN+CELL,python代码取数据方法差不多:

python 复制代码
date_prex_start = bytes('dt_' + starttime, encoding='utf-8')  # row_start
date_prex_end = bytes('dt_' + endtime, encoding='utf-8')  # row_stop
# 通过设置row key的前缀row_prefix参数来进行局部扫描
outdata = dict(table.scan(row_start=date_prex_start, row_stop=date_prex_end,
                          columns=[onecolumn]))

得到的结果如下,是个字典格式:

3. 按格式输出hbase数据结果

我们希望输出的结果是dataframe的,而且第一列是time,第二列是value,所以就做个简单格式处理:

python 复制代码
timesep = list(map(lambda x: x.decode('utf-8').replace('dt_', ''), outdata.keys()))
tempdata = list(outdata.values())
valuelist = list(map(lambda x: float(list(x.values())[0]), tempdata))
if len(timesep) > 0:
    db_data2 = pd.DataFrame({'时间': timesep, onecolumn: valuelist})
    db_data2.loc[:, '时间2'] = [i[:16] for i in db_data2['时间']]
    db_data2 = db_data2.drop_duplicates(subset=['时间2'], keep='last')  # 一分钟内多次数值取一个即可
else:
    db_data2 = pd.DataFrame()
if len(db_data2) < 1:
    return pd.DataFrame()
db_data2.loc[:, '时间戳'] = [time.mktime(time.strptime(i, "%Y-%m-%d %H:%M:%S")) for i in db_data2['时间']]
db_data2 = db_data2.sort_values(by=['时间戳'], ascending=False)  # 将最新的数值放最前面
db_data3 = db_data2.drop(columns=['时间2', '时间戳'])
db_data3.columns = ['time', 'value']

4. 完整代码(code)

python 复制代码
import happybase
import time
import pandas as pd
from pathlib import Path

os_file_name = Path(__file__).name


def hbase_connection(hbase_master, hbase_port, table_prefix=None):
    connection = happybase.Connection(host=hbase_master, port=hbase_port, table_prefix=table_prefix)
    return connection


def get_data_by_tum(hbase_master, hbase_port, table_prefix, tablename, columnslist, starttime, endtime):
    columnsid = '$'.join(columnslist)
    onecolumn = 'TimeSe:dt_' + columnsid  # column

    connection = hbase_connection(hbase_master, hbase_port, table_prefix)  # 在连接的时候创建项目空间
    table = connection.table(tablename)  # 获取表连接
    date_prex_start = bytes('dt_' + starttime, encoding='utf-8')  # row_start
    date_prex_end = bytes('dt_' + endtime, encoding='utf-8')  # row_stop
    # 通过设置row key的前缀row_prefix参数来进行局部扫描
    outdata = dict(table.scan(row_start=date_prex_start, row_stop=date_prex_end,
                              columns=[onecolumn]))

    timesep = list(map(lambda x: x.decode('utf-8').replace('dt_', ''), outdata.keys()))
    tempdata = list(outdata.values())
    valuelist = list(map(lambda x: float(list(x.values())[0]), tempdata))
    if len(timesep) > 0:
        db_data2 = pd.DataFrame({'时间': timesep, onecolumn: valuelist})
        db_data2.loc[:, '时间2'] = [i[:16] for i in db_data2['时间']]
        db_data2 = db_data2.drop_duplicates(subset=['时间2'], keep='last')  # 一分钟内多次数值取一个即可
    else:
        db_data2 = pd.DataFrame()
    if len(db_data2) < 1:
        return pd.DataFrame()
    db_data2.loc[:, '时间戳'] = [time.mktime(time.strptime(i, "%Y-%m-%d %H:%M:%S")) for i in db_data2['时间']]
    db_data2 = db_data2.sort_values(by=['时间戳'], ascending=False)  # 将最新的数值放最前面
    db_data3 = db_data2.drop(columns=['时间2', '时间戳'])
    db_data3.columns = ['time', 'value']
    return db_data3


if __name__ == '__main__':
    begin_time = '2023-08-22 00:00:00'
    end_time = '2023-08-23 00:00:00'
    hbase_master = "142.21.8.22"
    hbase_port = 9097
    table_prefix = "baotouyiqi"
    table_name = "DB_level0"
    onedata = ["62340", "20", "204"]
    dataget = get_data_by_tum(hbase_master, hbase_port, table_prefix, table_name,
                              onedata, begin_time, end_time)
    print(dataget)
相关推荐
Python×CATIA工业智造44 分钟前
Frida RPC高级应用:动态模拟执行Android so文件实战指南
开发语言·python·pycharm
onceco1 小时前
领域LLM九讲——第5讲 为什么选择OpenManus而不是QwenAgent(附LLM免费api邀请码)
人工智能·python·深度学习·语言模型·自然语言处理·自动化
狐凄2 小时前
Python实例题:基于 Python 的简单聊天机器人
开发语言·python
悦悦子a啊3 小时前
Python之--基本知识
开发语言·前端·python
笑稀了的野生俊5 小时前
在服务器中下载 HuggingFace 模型:终极指南
linux·服务器·python·bash·gpu算力
Naiva5 小时前
【小技巧】Python+PyCharm IDE 配置解释器出错,环境配置不完整或不兼容。(小智AI、MCP、聚合数据、实时新闻查询、NBA赛事查询)
ide·python·pycharm
路来了5 小时前
Python小工具之PDF合并
开发语言·windows·python
蓝婷儿5 小时前
Python 机器学习核心入门与实战进阶 Day 3 - 决策树 & 随机森林模型实战
人工智能·python·机器学习
AntBlack6 小时前
拖了五个月 ,不当韭菜体验版算是正式发布了
前端·后端·python
.30-06Springfield6 小时前
决策树(Decision tree)算法详解(ID3、C4.5、CART)
人工智能·python·算法·决策树·机器学习