Yeo-Johnson变换在R语言中的应用

R语言中应用Yeo-Johnson变换。我们将首先生成一组示例数据,这组数据将故意包含一些非正值,以展示Yeo-Johnson变换处理这类数据的能力。

示例数据生成

我们将生成一组含有正值、零值和负值的数据。

使用forecast包应用Yeo-Johnson变换

r 复制代码
# 安装和加载forecast包
if (!requireNamespace("forecast", quietly = TRUE)) install.packages("forecast")
library(forecast)

# 生成示例数据
set.seed(123) # 确保结果可复现
your_data <- c(rnorm(100, mean = 0, sd = 1), 0, -1, -2)  # 包含正值、零值和负值

# 查找最佳的lambda值
lambda <- BoxCox.lambda(your_data, lower = 0)

# 应用Yeo-Johnson变换
yeo_johnson_transformed <- BoxCox(your_data, lambda)

# 输出转换后的数据
print(yeo_johnson_transformed)

使用caret包应用Yeo-Johnson变换

r 复制代码
# 安装和加载caret包
if (!requireNamespace("caret", quietly = TRUE)) install.packages("caret")
library(caret)

# 使用相同的示例数据
your_data <- c(rnorm(100, mean = 0, sd = 1), 0, -1, -2)  # 与之前相同

# 使用preProcess函数应用Yeo-Johnson变换
pre_proc_value <- preProcess(your_data, method = c("YeoJohnson"))

# 使用predict函数应用转换
yeo_johnson_transformed <- predict(pre_proc_value, your_data)

# 输出转换后的数据
print(yeo_johnson_transformed)

这些代码片段展示了如何在R中生成一组简单的示例数据,并使用forecastcaret包应用Yeo-Johnson变换。请根据自己的需要选择适合的方法。在实际应用中,转换后的数据通常具有更接近正态分布的特性,这有助于提高各种统计分析和机器学习模型的效果。

相关推荐
CodeCraft Studio1 小时前
PDF处理控件Aspose.PDF教程:使用 Python 将 PDF 转换为 Base64
开发语言·python·pdf·base64·aspose·aspose.pdf
零点零一1 小时前
VS+QT的编程开发工作:关于QT VS tools的使用 qt的官方帮助
开发语言·qt
Broken Arrows2 小时前
Linux学习——管理网络安全(二十一)
linux·学习·web安全
今天也要学习吖2 小时前
谷歌nano banana官方Prompt模板发布,解锁六大图像生成风格
人工智能·学习·ai·prompt·nano banana·谷歌ai
雁于飞2 小时前
vscode中使用git、githup的基操
笔记·git·vscode·学习·elasticsearch·gitee·github
rannn_1113 小时前
【Javaweb学习|实训总结|Week1】html基础,CSS(选择器、常用样式、盒子模型、弹性盒布局、CSS定位、动画),js(基本类型、运算符典例)
css·笔记·学习·html
lingchen19063 小时前
MATLAB的数值计算(三)曲线拟合与插值
开发语言·matlab
gb42152873 小时前
java中将租户ID包装为JSQLParser的StringValue表达式对象,JSQLParser指的是?
java·开发语言·python
一朵梨花压海棠go3 小时前
html+js实现表格本地筛选
开发语言·javascript·html·ecmascript