Yeo-Johnson变换在R语言中的应用

R语言中应用Yeo-Johnson变换。我们将首先生成一组示例数据,这组数据将故意包含一些非正值,以展示Yeo-Johnson变换处理这类数据的能力。

示例数据生成

我们将生成一组含有正值、零值和负值的数据。

使用forecast包应用Yeo-Johnson变换

r 复制代码
# 安装和加载forecast包
if (!requireNamespace("forecast", quietly = TRUE)) install.packages("forecast")
library(forecast)

# 生成示例数据
set.seed(123) # 确保结果可复现
your_data <- c(rnorm(100, mean = 0, sd = 1), 0, -1, -2)  # 包含正值、零值和负值

# 查找最佳的lambda值
lambda <- BoxCox.lambda(your_data, lower = 0)

# 应用Yeo-Johnson变换
yeo_johnson_transformed <- BoxCox(your_data, lambda)

# 输出转换后的数据
print(yeo_johnson_transformed)

使用caret包应用Yeo-Johnson变换

r 复制代码
# 安装和加载caret包
if (!requireNamespace("caret", quietly = TRUE)) install.packages("caret")
library(caret)

# 使用相同的示例数据
your_data <- c(rnorm(100, mean = 0, sd = 1), 0, -1, -2)  # 与之前相同

# 使用preProcess函数应用Yeo-Johnson变换
pre_proc_value <- preProcess(your_data, method = c("YeoJohnson"))

# 使用predict函数应用转换
yeo_johnson_transformed <- predict(pre_proc_value, your_data)

# 输出转换后的数据
print(yeo_johnson_transformed)

这些代码片段展示了如何在R中生成一组简单的示例数据,并使用forecastcaret包应用Yeo-Johnson变换。请根据自己的需要选择适合的方法。在实际应用中,转换后的数据通常具有更接近正态分布的特性,这有助于提高各种统计分析和机器学习模型的效果。

相关推荐
@卞42 分钟前
C语言常见概念
c语言·开发语言
wjs20241 小时前
Eclipse 关闭项目详解
开发语言
沐知全栈开发1 小时前
《隐藏(Hide)》
开发语言
lkbhua莱克瓦241 小时前
Java基础——方法
java·开发语言·笔记·github·学习方法
catchadmin1 小时前
PHP 依赖管理器 Composer 2.9 发布
开发语言·php·composer
范纹杉想快点毕业2 小时前
《嵌入式开发硬核指南:91问一次讲透底层到架构》
java·开发语言·数据库·单片机·嵌入式硬件·mongodb
毕设源码-邱学长2 小时前
【开题答辩全过程】以 基于Python的Bilibili平台数据分析与可视化实现为例,包含答辩的问题和答案
开发语言·python·数据分析
芝麻馅汤圆儿2 小时前
c文件编译
c语言·开发语言
千疑千寻~2 小时前
【Qt】QT的程序打包
开发语言·qt
咚咚王者2 小时前
人工智能之编程进阶 Python高级:第十一章 过渡项目
开发语言·人工智能·python