能在手机上运行,仅仅0.5B大小的小语言模型MobiLlama

模型介绍

该模型基于LLaMA-7B架构设计,旨在能够在边缘设备上高效运行,无需将数据发送到远程服务器或云端处理。如智能手机、平板电脑、智能手表等。

MobiLlama模型虽然体积小、对资源的需求低,但仍能提供高精度的语言理解和生成能力。

项目还提供了在安卓上运行MobiLlama模型的方法和安装包下载链接。mbzuaiac-my.sharepoint.com/:f:/g/personal...

主要能力

1、高精度的语言理解与生成:即便参数规模相对较小(0.5亿参数),MobiLlama也能高效处理自然语言理解和生成任务,如文本摘要、问答系统、自然语言推理等。

2、轻量级设计:通过优化模型架构和采用参数共享技术,MobiLlama实现了模型大小和计算资源需求的显著减少,使其适合在计算能力有限的设备上运行。

3、资源效率高:MobiLlama在设计时考虑了能效和内存使用效率,使其在执行任务时消耗更少的电力和存储空间,适合长时间运行在移动设备上。

4、适应性强:由于其轻量级和高效的特性,MobiLlama可以轻松集成到各种应用中,从智能助手到语言翻译工具,都能从其快速、精确的处理能力中受益。

5、全透明:MobiLlama项目开源,提供了模型的训练数据、代码和训练过程的详细信息,使其他研究者和开发者可以完全了解模型的工作原理,有助于促进技术的进步和应用的开发。

模型版本

MobiLlama项目提供了不同配置的模型版本,包括0.5B、0.8B、1B及其聊天版本的模型。

0.5B:这个版本的模型有0.5亿参数,是设计中最轻量级的一个,旨在提供较高的效率和速度,同时保持良好的性能,特别适合在资源受限的设备上使用。

0.8B:0.8亿参数的模型在0.5B的基础上增加了参数,以改进模型的性能和理解能力,适合于需要更复杂处理能力的场景。

1B:1亿参数的模型进一步增强了模型的能力,能够处理更复杂的语言理解和生成任务,适用于对性能要求更高的应用。

数据集

项目使用了预处理过的Amber数据集,总计约1.2万亿token,数据来源包括Arxiv、Book、C4、Refined-Web、StarCoder、StackExchange和Wikipedia等,总大小约为8TB。

评估结果

基准测试性能

MobiLlama模型在包括HellaSwag、TruthfulQA、MMLU、ARC_C、CrowsPairs、PIQA、RACE、SIQA、WinoGrande等测试中的性能表现,与其他模型进行了比较。在这些基准测试中,MobiLlama表现出色,尤其是在0.5B和0.8B配置下,展现了其高效处理复杂语言任务的能力。具体的评估结果如下:

MobiLlama (0.5B):在多项任务中取得了优异的成绩,平均得分达到46.00,突出显示了模型的高效率和准确性。

MobiLlama (0.8B):进一步提升了性能,平均得分达到46.67,表明了通过增加模型规模可以进一步提升性能。

比较分析

与其他模型相比,如GPT-NEO、TinyStarCoder、Cerebras-GPT等,MobiLlama在相同或更小的参数规模下,能够实现更高的准确度和效率。这些结果凸显了MobiLlama在设计上的优势,即通过参数共享和模型优化,实现了在资源有限的设备上运行高性能模型的目标。

具体性能对比

GPT-NEO (0.15B):平均得分为40.93。

TinyStarCoder (0.17B):平均得分为37.86。

Cerebras-GPT (0.26B):平均得分为40.69。

MobiLlama的性能优于这些模型,展现了其作为小型语言模型的竞争力和潜力。

模型下载:huggingface.co/MBZUAI

GitHub:https://github.com/mbzuai-oryx/MobiLlama

论文:arxiv.org/abs/2402.16840

在线体验:845b645234785da51b.gradio.live

相关推荐
后端小肥肠2 小时前
Coze实战:一分钟生成10w+独居女孩Vlog动画,零基础也能日更!
人工智能·aigc·coze
iThinkAi智能体3 小时前
Coze(扣子)智能体工作流:自动批量生成小红书图文,1分钟100篇
aigc
墨风如雪3 小时前
小红书AI新里程碑:dots.llm1,中文MoE的“人文”突破!
aigc
iThinkAi智能体3 小时前
Coze(扣子)智能体工作流:自动批量生成书单号视频,1分钟100个,书单号博主都在用!
aigc
架构师那点事儿3 小时前
一文带你俯瞰大模型领域的世界
langchain·aigc·ai编程
小奏技术17 小时前
基于 Spring AI 和 MCP:用自然语言查询 RocketMQ 消息
后端·aigc·mcp
杂雾无尘19 小时前
用 Trae 打造全栈项目魔法师 - 让项目初始化不再是噩梦
aigc·openai·ai编程
程序员X小鹿1 天前
全球首个能无限跑的AI来了!AI Agents的下一站?这才是真的颠覆式革新!(附10个邀请码)
aigc
掘我的金1 天前
深入解析Stream函数与生成器本质
llm·aigc
掘我的金1 天前
Prompt Cache 与 Streaming:核心机制与优化实践
llm·aigc