MySQL 数据库表设计和优化

一、数据结构设计

正确的数据结构设计对数据库的性能是非常重要的。 在设计数据表时,尽量遵循一下几点:

  1. 将数据分解为合适的表,每个表都应该有清晰定义的目的,避免将过多的数据存储在单个表中。
  2. 使用适当的数据类型来存储数据,避免使用过大或不必要的数据类型,以节省空间并提高读写效率。
  3. 避免使用过多的NULL值,尽量设计出不含NULL值的表结构,有助于节省存储空间并提高查询效率。

1.1 创建数据表示例

用户数据表

sql 复制代码
create table users (
    id int auto_increment primary key,
    username varchar(50) not null,
    email varchar(100) not null,
    balance int,
    created_at timestamp default current_timestamp
);

二、索引的使用

2.1 什么是索引

首先我们要了解什么是索引、它是干嘛?

索引是一种用于提高数据库查询性能的数据结构。你可以把它想象成一本书的目录,可以提高查询的速度。也就是说,当你在表的列上创建索引时,数据库会根据这些列的数值快速定位到具体的行,不需要整表的扫描。

2.2 常见的索引类型

  1. 普通索引:不要求被索引的列的值是唯一的。
  2. 唯一索引:要求被索引的列的值是唯一的。
  3. 主键索引:要求被索引的列的值是唯一的,且不允许为空。
  4. 全文索引:在本文数据中进行全文搜索, 比如在某一段文章中查找出特定的关键字。

在使用索引时,尽量遵循这几点:

  1. 根据实际需求创建合适的索引,通常对经常用于查询条件的列进行索引。
  2. 避免在过多的列上使用索引,这会增加写操作的开销,还会占用额外的存储空间。
  3. 定期检查删除不再使用的索引。

2.3 索引示例

添加索引

sql 复制代码
create index idx_username on users (username);

三、增加查询语句效率

我们在编写查询语句时,尽量遵循以下几点:

  1. 尽量不去使用 select * ,而是明确列出需要的字段,避免读取不必要的数据。
  2. 谨慎使用子查询,尽量优化为连接查询以及其他方式。
  3. 合理使用join,多表连接可能会引发性能为题,使用合适的连接类型来优化查询效率。

3.1 优化查询示例

优化查询语句

sql 复制代码
select id, username from users where username = 'zhangsan' limit 1;

四、正确使用事务

4.1 什么是事务?

它是一组sql查询的集合,这些查询要么全部成功执行,要么全部失败回滚。事务可以确保数据的完整性和唯一性。

4.2 事务的特性

事务具有以下特性:

  1. 原子性:事务中所有操作要么全部成功执行,要么全部失败回滚。
  2. 一致性:事务开始之前和结束之后,数据库的完整性约束没有被破坏,数据始终保持一致状态。
  3. 隔离性:多个事物并发执行时,每个事物都应当与其他事物相互隔离。
  4. 持久性:一旦事务进行提交,它所做的修改会永久的保存在数据库中。

事务的使用尽量遵循一点:

合理设置事务的范围,避免事务持有锁时间过长导致性能问题。

4.3 事务的示例

使用事务

start transaction; 开始一个事务,后续sql将视为一个整体,要么全部执行,要么全部失败。

commit; 提交事务,如果前面的所有操作都执行成功,那这些操作都将保存到数据库中。

sql 复制代码
start transaction;
insert into orders (user_id, total_amount) values (1, 100);
update users set balance = balance - 100 where id = 1;
commit;

五、分区表

5.1 什么是分区表

通过对数据表进行分区,可以提高查询性能。

也就是说当我们有一个很庞大的数据进行处理时,通过分区表可以减少查询所需的数据量,减缓查询时间。

创建分区表尽量遵循一点:

  1. 根据数据的时间范围进行分区,可以加快查询速度,针对历史性数据的查询。

5.2 分区表示例

创建分区表

partition by range (year(log_time)) 表示按照log_time字段进行分区。

partition p0 values less than(2022) 表示创建一个名为p0的分区,用于存储log_time 小于2022的数据。

sql 复制代码
create table logs (
    id int auto_increment,
    log_time timestamp,
    message text,
    primary key(id, log_time)
) partition by range (year(log_time)) (
    partition p0 values less than (2022),
    partition p1 values less than (2023),
    partition p2 values less than (2024)
);
相关推荐
尘浮生5 分钟前
Java项目实战II基于SpringBoot的共享单车管理系统开发文档+数据库+源码)
java·开发语言·数据库·spring boot·后端·微信小程序·小程序
山山而川粤1 小时前
废品买卖回收管理系统|Java|SSM|Vue| 前后端分离
java·开发语言·后端·学习·mysql
杨江2 小时前
ThingsBoard安装测试
服务器·数据库
mit6.8242 小时前
[Redis#4] string | 常用命令 | + mysql use:cache | session
数据库·redis·后端·缓存
Beekeeper&&P...3 小时前
map和redis关系
数据库·redis·缓存
jianqimingtian3 小时前
如何使用 Matlab 制作 GrabCAD 体素打印切片
数据结构·数据库
真真假假々3 小时前
MySQL和ADSDB
数据库·mysql
秦老师Q3 小时前
MySQL第二章 sql约束与sql数据类型
数据库·sql·mysql
不是二师兄的八戒3 小时前
mysql in查询大数据量业务无法避免情境下优化
数据库·mysql
苹果醋33 小时前
vue3 在哪些方便做了性能提升?
java·运维·spring boot·mysql·nginx