(六)Dropout抑制过拟合与超参数的选择--九五小庞

过拟合

  • 即模型在训练集上表现的很好,但是在测试集上效果却很差。也就是说,在已知的数据集合中非常好,再添加一些新数据进来效果就会差很多

欠拟合

  • 即模型在训练集上表现的效果差,没有充分利用数据,预测准确率很低,拟合结果严重不符合预期

dropout层


为什么说Dropout可以解决过拟合

  • 取平均的作用
    先回到标准的模型即没有dropout,我们用相同的训练数据去训练5个不同的神经网络,一般会得到5个不同的结果,此时我们可以采取"5个结果取均值"或者"多数取胜的投票策略"去决定最终结果。
  • 减少神经元之间复杂的共适应关系
    因为dropout程序导致两个神经元不一定每次都在一个dropout网络中出现。这样权值的更新不再依赖于有固定关系的隐含节点的共同作用,阻止了某些特征仅仅在其他特征下才有效果的情况。
  • dropout类似于性别在生物进化中的角色
    物种为了生存往往会倾向于适用这种环境,环境突变则会导致物种难以做出及时的反应,性别的出现可以繁衍出适用新环境的变种,有效的阻止过拟合,即避免环境改变时物种可能面临的灭绝

参数选择原则

  • 理想的模型刚好在欠拟合和过拟合的界线上,也就是正好拟合数据。

首先开发一个过拟合的模型

  1. 添加更多的层
  2. 让每一层变得更大
  3. 训练更多的轮次

然后抑制过拟合

  1. dropout
  2. 正则化
  3. 图像增强
  • 增大训练数据是抑制过拟合的最好办法,在没有数据的前提下,上面三种方法可以来抑制过拟合

再次调节超参数

  1. 学习速率
  2. 隐藏单层神经元数
  3. 训练轮次
  • 超参数的选择是一个经验与不断测试的结果。经典机器学习的方法,如特征工程,增加训练数据也要做
  • 交叉验证

构建网络的总原则

  • 总的原则是:保证神经网络容量组个拟合数据
  1. 增大网络容量,直到过拟合
  2. 采取措施抑制过拟合
  3. 继续增大网络容量,直到过拟合
相关推荐
极海拾贝28 分钟前
GeoScene解决方案中心正式上线!
大数据·人工智能·深度学习·arcgis·信息可视化·语言模型·解决方案
知乎的哥廷根数学学派41 分钟前
基于生成对抗U-Net混合架构的隧道衬砌缺陷地质雷达数据智能反演与成像方法(以模拟信号为例,Pytorch)
开发语言·人工智能·pytorch·python·深度学习·机器学习
小和尚同志1 小时前
又来学习提示词啦~13.9k star 的系统提示词集合
人工智能·aigc
昨夜见军贴06161 小时前
IACheck × AI审核重构检测方式:破解工业检测报告频繁返工的根本难题
人工智能·重构
知乎的哥廷根数学学派1 小时前
基于自适应多尺度小波核编码与注意力增强的脉冲神经网络机械故障诊断(Pytorch)
人工智能·pytorch·python·深度学习·神经网络·机器学习
好奇龙猫2 小时前
【AI学习-comfyUI学习-三十二节-FLXU原生态反推+controlnet depth(UNion)工作流-各个部分学习】
人工智能·学习
童话名剑2 小时前
锚框 与 完整YOLO示例(吴恩达深度学习笔记)
笔记·深度学习·yolo··anchor box
peixiuhui2 小时前
EdgeGateway 快速开始手册-表达式 Modbus 报文格式
人工智能·mqtt·边缘计算·iot·modbus tcp·iotgateway·modbus rtu
bing.shao3 小时前
golang 做AI任务执行
开发语言·人工智能·golang