(六)Dropout抑制过拟合与超参数的选择--九五小庞

过拟合

  • 即模型在训练集上表现的很好,但是在测试集上效果却很差。也就是说,在已知的数据集合中非常好,再添加一些新数据进来效果就会差很多

欠拟合

  • 即模型在训练集上表现的效果差,没有充分利用数据,预测准确率很低,拟合结果严重不符合预期

dropout层


为什么说Dropout可以解决过拟合

  • 取平均的作用
    先回到标准的模型即没有dropout,我们用相同的训练数据去训练5个不同的神经网络,一般会得到5个不同的结果,此时我们可以采取"5个结果取均值"或者"多数取胜的投票策略"去决定最终结果。
  • 减少神经元之间复杂的共适应关系
    因为dropout程序导致两个神经元不一定每次都在一个dropout网络中出现。这样权值的更新不再依赖于有固定关系的隐含节点的共同作用,阻止了某些特征仅仅在其他特征下才有效果的情况。
  • dropout类似于性别在生物进化中的角色
    物种为了生存往往会倾向于适用这种环境,环境突变则会导致物种难以做出及时的反应,性别的出现可以繁衍出适用新环境的变种,有效的阻止过拟合,即避免环境改变时物种可能面临的灭绝

参数选择原则

  • 理想的模型刚好在欠拟合和过拟合的界线上,也就是正好拟合数据。

首先开发一个过拟合的模型

  1. 添加更多的层
  2. 让每一层变得更大
  3. 训练更多的轮次

然后抑制过拟合

  1. dropout
  2. 正则化
  3. 图像增强
  • 增大训练数据是抑制过拟合的最好办法,在没有数据的前提下,上面三种方法可以来抑制过拟合

再次调节超参数

  1. 学习速率
  2. 隐藏单层神经元数
  3. 训练轮次
  • 超参数的选择是一个经验与不断测试的结果。经典机器学习的方法,如特征工程,增加训练数据也要做
  • 交叉验证

构建网络的总原则

  • 总的原则是:保证神经网络容量组个拟合数据
  1. 增大网络容量,直到过拟合
  2. 采取措施抑制过拟合
  3. 继续增大网络容量,直到过拟合
相关推荐
33三 三like1 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a1 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
腾讯云开发者2 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗2 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
yLDeveloper3 小时前
从模型评估、梯度难题到科学初始化:一步步解析深度学习的训练问题
深度学习
Coder_Boy_3 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
啊森要自信3 小时前
CANN ops-cv:面向计算机视觉的 AI 硬件端高效算子库核心架构与开发逻辑
人工智能·计算机视觉·架构·cann
2401_836235863 小时前
中安未来SDK15:以AI之眼,解锁企业档案的数字化基因
人工智能·科技·深度学习·ocr·生活
njsgcs3 小时前
llm使用 AgentScope-Tuner 通过 RL 训练 FrozenLake 智能体
人工智能·深度学习