(六)Dropout抑制过拟合与超参数的选择--九五小庞

过拟合

  • 即模型在训练集上表现的很好,但是在测试集上效果却很差。也就是说,在已知的数据集合中非常好,再添加一些新数据进来效果就会差很多

欠拟合

  • 即模型在训练集上表现的效果差,没有充分利用数据,预测准确率很低,拟合结果严重不符合预期

dropout层


为什么说Dropout可以解决过拟合

  • 取平均的作用
    先回到标准的模型即没有dropout,我们用相同的训练数据去训练5个不同的神经网络,一般会得到5个不同的结果,此时我们可以采取"5个结果取均值"或者"多数取胜的投票策略"去决定最终结果。
  • 减少神经元之间复杂的共适应关系
    因为dropout程序导致两个神经元不一定每次都在一个dropout网络中出现。这样权值的更新不再依赖于有固定关系的隐含节点的共同作用,阻止了某些特征仅仅在其他特征下才有效果的情况。
  • dropout类似于性别在生物进化中的角色
    物种为了生存往往会倾向于适用这种环境,环境突变则会导致物种难以做出及时的反应,性别的出现可以繁衍出适用新环境的变种,有效的阻止过拟合,即避免环境改变时物种可能面临的灭绝

参数选择原则

  • 理想的模型刚好在欠拟合和过拟合的界线上,也就是正好拟合数据。

首先开发一个过拟合的模型

  1. 添加更多的层
  2. 让每一层变得更大
  3. 训练更多的轮次

然后抑制过拟合

  1. dropout
  2. 正则化
  3. 图像增强
  • 增大训练数据是抑制过拟合的最好办法,在没有数据的前提下,上面三种方法可以来抑制过拟合

再次调节超参数

  1. 学习速率
  2. 隐藏单层神经元数
  3. 训练轮次
  • 超参数的选择是一个经验与不断测试的结果。经典机器学习的方法,如特征工程,增加训练数据也要做
  • 交叉验证

构建网络的总原则

  • 总的原则是:保证神经网络容量组个拟合数据
  1. 增大网络容量,直到过拟合
  2. 采取措施抑制过拟合
  3. 继续增大网络容量,直到过拟合
相关推荐
AIBox3653 分钟前
ChatGPT 中文版镜像官网,GPT5.2使用教程(2025年 12 月更新)
人工智能
测试人社区-千羽8 分钟前
生物识别系统的测试安全性与漏洞防护实践
运维·人工智能·opencv·安全·数据挖掘·自动化·边缘计算
2501_9247949010 分钟前
企业AI转型为何难?——从“不敢用”到“用得稳”的路径重构
大数据·人工智能·重构
Tezign_space21 分钟前
小红书内容运营工具怎么选?专业视角拆解优质工具核心标准
大数据·人工智能·内容运营
老马啸西风23 分钟前
成熟企业级技术平台 MVE-010-跳板机 / 堡垒机(Jump Server / Bastion Host)
人工智能·深度学习·算法·职场和发展
康实训24 分钟前
养老实训室建设标准指南
大数据·人工智能·实训室·养老实训室·实训室建设
袖手蹲25 分钟前
Arduino UNO Q 烘托圣诞节气氛
人工智能·单片机·嵌入式硬件
wjykp32 分钟前
part 3神经网络的学习
人工智能·神经网络·学习
core51240 分钟前
【硬核测评】Gemini 3 编程能力全面进化:不仅仅是 Copilot,更是你的 AI 架构师
人工智能·编程·copilot
Cathyqiii41 分钟前
Diff-MTS: Temporal-Augmented ConditionalDiffusion-Based AIGC
深度学习·aigc