(六)Dropout抑制过拟合与超参数的选择--九五小庞

过拟合

  • 即模型在训练集上表现的很好,但是在测试集上效果却很差。也就是说,在已知的数据集合中非常好,再添加一些新数据进来效果就会差很多

欠拟合

  • 即模型在训练集上表现的效果差,没有充分利用数据,预测准确率很低,拟合结果严重不符合预期

dropout层


为什么说Dropout可以解决过拟合

  • 取平均的作用
    先回到标准的模型即没有dropout,我们用相同的训练数据去训练5个不同的神经网络,一般会得到5个不同的结果,此时我们可以采取"5个结果取均值"或者"多数取胜的投票策略"去决定最终结果。
  • 减少神经元之间复杂的共适应关系
    因为dropout程序导致两个神经元不一定每次都在一个dropout网络中出现。这样权值的更新不再依赖于有固定关系的隐含节点的共同作用,阻止了某些特征仅仅在其他特征下才有效果的情况。
  • dropout类似于性别在生物进化中的角色
    物种为了生存往往会倾向于适用这种环境,环境突变则会导致物种难以做出及时的反应,性别的出现可以繁衍出适用新环境的变种,有效的阻止过拟合,即避免环境改变时物种可能面临的灭绝

参数选择原则

  • 理想的模型刚好在欠拟合和过拟合的界线上,也就是正好拟合数据。

首先开发一个过拟合的模型

  1. 添加更多的层
  2. 让每一层变得更大
  3. 训练更多的轮次

然后抑制过拟合

  1. dropout
  2. 正则化
  3. 图像增强
  • 增大训练数据是抑制过拟合的最好办法,在没有数据的前提下,上面三种方法可以来抑制过拟合

再次调节超参数

  1. 学习速率
  2. 隐藏单层神经元数
  3. 训练轮次
  • 超参数的选择是一个经验与不断测试的结果。经典机器学习的方法,如特征工程,增加训练数据也要做
  • 交叉验证

构建网络的总原则

  • 总的原则是:保证神经网络容量组个拟合数据
  1. 增大网络容量,直到过拟合
  2. 采取措施抑制过拟合
  3. 继续增大网络容量,直到过拟合
相关推荐
梓羽玩Python几秒前
一夜刷屏AI圈!Manus:这不是聊天机器人,是你的“AI打工仔”!
人工智能
Gene_INNOCENT1 分钟前
大型语言模型训练的三个阶段:Pre-Train、Instruction Fine-tuning、RLHF (PPO / DPO / GRPO)
人工智能·深度学习·语言模型
游戏智眼2 分钟前
中国团队发布通用型AI Agent产品Manus;GPT-4.5正式面向Plus用户推出;阿里发布并开源推理模型通义千问QwQ-32B...|游戏智眼日报
人工智能·游戏·游戏引擎·aigc
挣扎与觉醒中的技术人3 分钟前
如何优化FFmpeg拉流性能及避坑指南
人工智能·深度学习·性能优化·ffmpeg·aigc·ai编程
watersink7 分钟前
Dify框架下的基于RAG流程的政务检索平台
人工智能·深度学习·机器学习
脑极体10 分钟前
在MWC2025,读懂华为如何以行践言
大数据·人工智能·华为
DeepBI13 分钟前
AI+大数据:DeepBI重构竞品分析新思路
人工智能
KoiC14 分钟前
内网环境部署Deepseek+Dify,构建企业私有化AI应用
linux·人工智能·ubuntu·docker·大模型·ai应用·deepseek
程序员Linc25 分钟前
计算机视觉 vs 机器视觉 | 机器学习 vs 深度学习:核心差异与行业启示
深度学习·机器学习·计算机视觉·机器视觉
不去幼儿园25 分钟前
【启发式算法】Dijkstra算法详细介绍(Python)
人工智能·python·算法·机器学习·启发式算法·图搜索算法