(六)Dropout抑制过拟合与超参数的选择--九五小庞

过拟合

  • 即模型在训练集上表现的很好,但是在测试集上效果却很差。也就是说,在已知的数据集合中非常好,再添加一些新数据进来效果就会差很多

欠拟合

  • 即模型在训练集上表现的效果差,没有充分利用数据,预测准确率很低,拟合结果严重不符合预期

dropout层


为什么说Dropout可以解决过拟合

  • 取平均的作用
    先回到标准的模型即没有dropout,我们用相同的训练数据去训练5个不同的神经网络,一般会得到5个不同的结果,此时我们可以采取"5个结果取均值"或者"多数取胜的投票策略"去决定最终结果。
  • 减少神经元之间复杂的共适应关系
    因为dropout程序导致两个神经元不一定每次都在一个dropout网络中出现。这样权值的更新不再依赖于有固定关系的隐含节点的共同作用,阻止了某些特征仅仅在其他特征下才有效果的情况。
  • dropout类似于性别在生物进化中的角色
    物种为了生存往往会倾向于适用这种环境,环境突变则会导致物种难以做出及时的反应,性别的出现可以繁衍出适用新环境的变种,有效的阻止过拟合,即避免环境改变时物种可能面临的灭绝

参数选择原则

  • 理想的模型刚好在欠拟合和过拟合的界线上,也就是正好拟合数据。

首先开发一个过拟合的模型

  1. 添加更多的层
  2. 让每一层变得更大
  3. 训练更多的轮次

然后抑制过拟合

  1. dropout
  2. 正则化
  3. 图像增强
  • 增大训练数据是抑制过拟合的最好办法,在没有数据的前提下,上面三种方法可以来抑制过拟合

再次调节超参数

  1. 学习速率
  2. 隐藏单层神经元数
  3. 训练轮次
  • 超参数的选择是一个经验与不断测试的结果。经典机器学习的方法,如特征工程,增加训练数据也要做
  • 交叉验证

构建网络的总原则

  • 总的原则是:保证神经网络容量组个拟合数据
  1. 增大网络容量,直到过拟合
  2. 采取措施抑制过拟合
  3. 继续增大网络容量,直到过拟合
相关推荐
之歆2 分钟前
Coze 照片知识库深度解析:当 AI 学会「看图说话」
人工智能
苡~7 分钟前
【claude skill系列 - 10】Claude_Skill全栈实战_从0到1构建个人AI助手
人工智能·ai编程·api 中转站·稳定ai编程工具
小陈phd9 分钟前
多模态大模型学习笔记(五)—— 神经网络激活函数完整指南
人工智能·笔记·神经网络·学习·自然语言处理
曦云沐11 分钟前
第四篇:LangChain 1.0 Community 生态全览:第三方集成与厂商包最佳实践
人工智能·langchain·大模型开发框架
小叮当⇔18 分钟前
电动工具品牌简介
大数据·人工智能
bst@微胖子20 分钟前
PyTorch深度学习框架项目合集一
人工智能·pytorch·python
Axis tech21 分钟前
Xsens动作捕捉系统采集用于人形机器人AI大数据训练的精确运动数据
人工智能·深度学习·机器人
哔哩哔哩技术24 分钟前
视频生成推理加速实践:基于全局时间索引的序列并行 3D 位置编码优化
人工智能
KG_LLM图谱增强大模型26 分钟前
AI临床决策助手实战:基于真实临床场景的交互式可解释 AI智能体系统研究
人工智能·知识图谱
极新30 分钟前
AI赋能品牌IP展望 | 2026智造新IP峰会圆桌对话实录
人工智能·品牌ip