飞桨(PaddlePaddle)模型组网教程

文章目录

      • 飞桨(PaddlePaddle)模型组网教程
        • [1. 直接使用内置模型](#1. 直接使用内置模型)
        • [2. 使用`paddle.nn.Sequential`组网](#2. 使用paddle.nn.Sequential组网)
        • [3. 使用`paddle.nn.Layer`组网](#3. 使用paddle.nn.Layer组网)
        • [4. 查看模型结构和参数](#4. 查看模型结构和参数)
        • [5. 总结](#5. 总结)

飞桨(PaddlePaddle)模型组网教程

在深度学习中,模型组网是定义神经网络结构的关键步骤。飞桨提供了多种方式来构建模型,本教程将介绍几种常见的模型组网方法。

1. 直接使用内置模型

飞桨在paddle.vision.models下提供了多种经典模型,可以直接使用。

python 复制代码
import paddle
from paddle.vision.models import LeNet

# 加载LeNet模型
model = LeNet(num_classes=10)
2. 使用paddle.nn.Sequential组网

paddle.nn.Sequential用于构建线性的网络结构,如LeNet、AlexNet和VGG。

python 复制代码
import paddle.nn as nn

# 使用Sequential构建LeNet模型
class LeNetSequential(nn.Sequential):
    def __init__(self, num_classes=10):
        super(LeNetSequential, self).__init__()
        self.add_sublayer('conv1', nn.Conv2D(1, 6, kernel_size=3, stride=1, padding=1))
        self.add_sublayer('relu1', nn.ReLU())
        self.add_sublayer('pool1', nn.MaxPool2D(kernel_size=2, stride=2))
        # ... 添加其他层 ...
        self.add_sublayer('fc', nn.Linear(120, num_classes))

# 实例化模型
model = LeNetSequential(num_classes=10)
3. 使用paddle.nn.Layer组网

对于复杂的网络结构,可以使用paddle.nn.Layer来构建。

python 复制代码
import paddle.nn as nn

class LeNetLayer(nn.Layer):
    def __init__(self, num_classes=10):
        super(LeNetLayer, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2D(1, 6, kernel_size=3, stride=1, padding=1),
            nn.ReLU(),
            nn.MaxPool2D(kernel_size=2, stride=2),
            # ... 添加其他层 ...
        )
        self.classifier = nn.Sequential(
            nn.Linear(120, 84),
            nn.ReLU(),
            nn.Linear(84, num_classes)
        )

    def forward(self, x):
        x = self.features(x)
        x = paddle.flatten(x, start_axis=1)
        x = self.classifier(x)
        return x

# 实例化模型
model = LeNetLayer(num_classes=10)
4. 查看模型结构和参数

使用paddle.summary函数可以查看模型的结构和参数信息。

python 复制代码
# 查看模型结构和参数
paddle.summary(model, (1, 28, 28))
5. 总结

本教程介绍了如何在飞桨中使用内置模型、paddle.nn.Sequentialpaddle.nn.Layer来构建神经网络。这些方法提供了不同层次的灵活性,可以根据你的需求选择合适的组网方式。

在实际应用中,你可能需要根据你的任务需求调整网络结构,例如添加正则化层、改变卷积层的参数等。通过这些基本的组网方法,你可以开始构建自己的深度学习模型。

相关推荐
老兵发新帖8 分钟前
关于ONNX和pytorch,我们应该怎么做?结合训练和推理
人工智能
方安乐10 分钟前
杂记:对齐研究(AI alignment)
人工智能
方见华Richard38 分钟前
世毫九《认知几何学修订版:从离散概念网络到认知拓扑动力学》
人工智能·经验分享·交互·原型模式·空间计算
人工智能培训1 小时前
基于Transformer的人工智能模型搭建与fine-tuning
人工智能·深度学习·机器学习·transformer·知识图谱·数字孪生·大模型幻觉
emma羊羊1 小时前
【AI技术安全】
网络·人工智能·安全
玄同7651 小时前
告别 AgentExecutor:LangChain v1.0+ Agent 模块深度迁移指南与实战全解析
人工智能·语言模型·自然语言处理·langchain·nlp·agent·智能体
Fxrain1 小时前
[Reading Paper]FFA-Net
图像处理·人工智能·计算机视觉
GISer_Jing1 小时前
Memory、Rules、Skills、MCP如何重塑AI编程
前端·人工智能·aigc·ai编程
DS随心转APP1 小时前
ChatGPT和Gemini回答怎么导出
人工智能·ai·chatgpt·deepseek·ds随心转
大模型玩家七七1 小时前
向量数据库实战:从“看起来能用”到“真的能用”,中间隔着一堆坑
数据库·人工智能·python·深度学习·ai·oracle