飞桨(PaddlePaddle)模型组网教程

文章目录

      • 飞桨(PaddlePaddle)模型组网教程
        • [1. 直接使用内置模型](#1. 直接使用内置模型)
        • [2. 使用`paddle.nn.Sequential`组网](#2. 使用paddle.nn.Sequential组网)
        • [3. 使用`paddle.nn.Layer`组网](#3. 使用paddle.nn.Layer组网)
        • [4. 查看模型结构和参数](#4. 查看模型结构和参数)
        • [5. 总结](#5. 总结)

飞桨(PaddlePaddle)模型组网教程

在深度学习中,模型组网是定义神经网络结构的关键步骤。飞桨提供了多种方式来构建模型,本教程将介绍几种常见的模型组网方法。

1. 直接使用内置模型

飞桨在paddle.vision.models下提供了多种经典模型,可以直接使用。

python 复制代码
import paddle
from paddle.vision.models import LeNet

# 加载LeNet模型
model = LeNet(num_classes=10)
2. 使用paddle.nn.Sequential组网

paddle.nn.Sequential用于构建线性的网络结构,如LeNet、AlexNet和VGG。

python 复制代码
import paddle.nn as nn

# 使用Sequential构建LeNet模型
class LeNetSequential(nn.Sequential):
    def __init__(self, num_classes=10):
        super(LeNetSequential, self).__init__()
        self.add_sublayer('conv1', nn.Conv2D(1, 6, kernel_size=3, stride=1, padding=1))
        self.add_sublayer('relu1', nn.ReLU())
        self.add_sublayer('pool1', nn.MaxPool2D(kernel_size=2, stride=2))
        # ... 添加其他层 ...
        self.add_sublayer('fc', nn.Linear(120, num_classes))

# 实例化模型
model = LeNetSequential(num_classes=10)
3. 使用paddle.nn.Layer组网

对于复杂的网络结构,可以使用paddle.nn.Layer来构建。

python 复制代码
import paddle.nn as nn

class LeNetLayer(nn.Layer):
    def __init__(self, num_classes=10):
        super(LeNetLayer, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2D(1, 6, kernel_size=3, stride=1, padding=1),
            nn.ReLU(),
            nn.MaxPool2D(kernel_size=2, stride=2),
            # ... 添加其他层 ...
        )
        self.classifier = nn.Sequential(
            nn.Linear(120, 84),
            nn.ReLU(),
            nn.Linear(84, num_classes)
        )

    def forward(self, x):
        x = self.features(x)
        x = paddle.flatten(x, start_axis=1)
        x = self.classifier(x)
        return x

# 实例化模型
model = LeNetLayer(num_classes=10)
4. 查看模型结构和参数

使用paddle.summary函数可以查看模型的结构和参数信息。

python 复制代码
# 查看模型结构和参数
paddle.summary(model, (1, 28, 28))
5. 总结

本教程介绍了如何在飞桨中使用内置模型、paddle.nn.Sequentialpaddle.nn.Layer来构建神经网络。这些方法提供了不同层次的灵活性,可以根据你的需求选择合适的组网方式。

在实际应用中,你可能需要根据你的任务需求调整网络结构,例如添加正则化层、改变卷积层的参数等。通过这些基本的组网方法,你可以开始构建自己的深度学习模型。

相关推荐
蹦蹦跳跳真可爱5893 分钟前
Python----循环神经网络(Transformer ----注意力机制)
人工智能·深度学习·nlp·transformer·循环神经网络
空中湖2 小时前
tensorflow武林志第二卷第九章:玄功九转
人工智能·python·tensorflow
lishaoan772 小时前
使用tensorflow的线性回归的例子(七)
人工智能·tensorflow·线性回归
千宇宙航5 小时前
闲庭信步使用SV搭建图像测试平台:第三十一课——基于神经网络的手写数字识别
图像处理·人工智能·深度学习·神经网络·计算机视觉·fpga开发
onceco6 小时前
领域LLM九讲——第5讲 为什么选择OpenManus而不是QwenAgent(附LLM免费api邀请码)
人工智能·python·深度学习·语言模型·自然语言处理·自动化
jndingxin8 小时前
OpenCV CUDA模块设备层-----高效地计算两个 uint 类型值的带权重平均值
人工智能·opencv·计算机视觉
Sweet锦9 小时前
零基础保姆级本地化部署文心大模型4.5开源系列
人工智能·语言模型·文心一言
hie988949 小时前
MATLAB锂离子电池伪二维(P2D)模型实现
人工智能·算法·matlab
晨同学032710 小时前
opencv的颜色通道问题 & rgb & bgr
人工智能·opencv·计算机视觉
蓝婷儿10 小时前
Python 机器学习核心入门与实战进阶 Day 3 - 决策树 & 随机森林模型实战
人工智能·python·机器学习