大数据分布式计算工具Spark数据计算实战讲解(filter方法,distinct方法,sortby方法)

练习案例

python 复制代码
# #单词统计计数
from pyspark import SparkConf, SparkContext
import os
os.environ['pyspark_python'] = "D:/python/JIESHIQI/python.exe"
#创建一个sparkconf类对象
conf = SparkConf().setMaster("local[*]").setAppName("test_spark_app")

#基于sparkconf类对象创建sparkcontext类对象
sc = SparkContext(conf=conf)
#读取文件信息
rdd = sc.textFile("D:/hello.txt")
#取出全部的单词
word_rdd = rdd.flatMap(lambda x: x.split(" "))
print(word_rdd.collect())
#['apple', 'bean', 'banana', 'spark', 'haoop', 'python', 'java', 'go', 'c++']

#将所有单词都转换成二元元组,单词为key,value设置为1
rdd2 = word_rdd.map(lambda word: (word, 1))
print(rdd2.collect())
#[('apple', 1), ('bean', 1), ('banana', 1), ('spark', 1), ('haoop', 1), ('python', 1), ('java', 1), ('go', 1), ('c++', 1)]

#分组并求和
rdd3 = rdd2.reduceByKey(lambda a, b: a+b)
print(rdd3.collect())

filter方法

功能:过滤想要的数据进行保留

python 复制代码
from pyspark import SparkConf, SparkContext
import os
os.environ['pyspark_python'] = "D:/python/JIESHIQI/python.exe"
#创建一个sparkconf类对象
conf = SparkConf().setMaster("local[*]").setAppName("test_spark_app")

#基于sparkconf类对象创建sparkcontext类对象
sc = SparkContext(conf=conf)

#准备一个rdd
rdd = sc.parallelize([1,2,3,4,5])
#对rdd的数据进行过滤
rdd2 = rdd.filter(lambda num: num % 2 == 0)

print(rdd2.collect()) #[2, 4]

distinct算子

功能:对rdd数据进行去重,返回新rdd

python 复制代码
from pyspark import SparkConf, SparkContext
import os
os.environ['pyspark_python'] = "D:/python/JIESHIQI/python.exe"
#创建一个sparkconf类对象
conf = SparkConf().setMaster("local[*]").setAppName("test_spark_app")

#基于sparkconf类对象创建sparkcontext类对象
sc = SparkContext(conf=conf)

#准备一个rdd
rdd = sc.parallelize([1,2,3,4,5,2,1,3,4,5])
#对rdd的数据进行过滤
# rdd2 = rdd.filter(lambda num: num % 2 == 0)

print(rdd.distinct().collect()) 
#[1, 2, 3, 4, 5]

sortby算子

功能:对rdd数据进行排序,基于你指定的排序依据

python 复制代码
from pyspark import SparkConf, SparkContext
import os
os.environ['pyspark_python'] = "D:/python/JIESHIQI/python.exe"
#创建一个sparkconf类对象
conf = SparkConf().setMaster("local[*]").setAppName("test_spark_app")

#基于sparkconf类对象创建sparkcontext类对象
sc = SparkContext(conf=conf)
#读取文件信息
rdd = sc.textFile("D:/hello.txt")
#取出全部的单词
word_rdd = rdd.flatMap(lambda x: x.split(" "))
print(word_rdd.collect())
#['apple', 'bean', 'banana', 'spark', 'haoop', 'python', 'java', 'go', 'c++']

#将所有单词都转换成二元元组,单词为key,value设置为1
rdd2 = word_rdd.map(lambda word: (word, 1))
print(rdd2.collect())
#[('apple', 1), ('bean', 1), ('banana', 1), ('spark', 1), ('haoop', 1), ('python', 1), ('java', 1), ('go', 1), ('c++', 1)]

#分组并求和
rdd3 = rdd2.reduceByKey(lambda a, b: a+b)
print(rdd3.collect())

#对结果进行排序
final_rdd = rdd3.sortBy(lambda x: x[1],ascending=True,numPartitions=1)
print(final_rdd)

练习案例

需求,复制以上内容到文件中,使用Spark读取文件进行计算:

•各个城市销售额排名,从大到小

•全部城市,有哪些商品类别在售卖

•北京市有哪些商品类别在售卖

python 复制代码
from pyspark import SparkConf, SparkContext
import os
import json
os.environ['pyspark_python'] = "D:/python/JIESHIQI/python.exe"
#创建一个sparkconf类对象
conf = SparkConf().setMaster("local[*]").setAppName("test_spark_app")

#基于sparkconf类对象创建sparkcontext类对象
sc = SparkContext(conf=conf)

#读取文件得到rdd
file_rdd = sc.textFile("D:/hello.txt")
#取出一个个JSON字符串
josn_str = file_rdd.flatMap(lambda x: x.split("|"))
#将一个个json字符串转换为字典
dict_rdd = josn_str.map(lambda x: json.loads(x))
# print(dict_rdd.collect())
#取出城市和销售额的排行
value_rdd = dict_rdd.map(lambda x: (x['areaName'],int(x['money'])))
#按城市分组按销售额聚合
rdd2 = value_rdd.reduceByKey(lambda a,b: a+b)
result1 = rdd2.sortBy(lambda x: x[1],ascending=False,numPartitions=1)
print(result1.collect())
#[('北京', 91556), ('杭州', 28831), ('天津', 12260), ('上海', 1513), ('郑州', 1120)]
#取出全部的商品的类别
category_rdd = dict_rdd.map(lambda x: x['category']).distinct()
print(category_rdd.collect())
#['电脑', '家电', '食品', '平板电脑', '手机', '家具', '书籍', '服饰']

#过滤北京市的数据
beijing_data = dict_rdd.filter(lambda x: x['areaName'] == '北京')
print(beijing_data.collect())
相关推荐
计算机编程小央姐20 小时前
跟上大数据时代步伐:食物营养数据可视化分析系统技术前沿解析
大数据·hadoop·信息可视化·spark·django·课程设计·食物
ajax_beijing20 小时前
zookeeper是啥
分布式·zookeeper·云原生
智数研析社21 小时前
9120 部 TMDb 高分电影数据集 | 7 列全维度指标 (评分 / 热度 / 剧情)+API 权威源 | 电影趋势分析 / 推荐系统 / NLP 建模用
大数据·人工智能·python·深度学习·数据分析·数据集·数据清洗
潘达斯奈基~21 小时前
《大数据之路1》笔记2:数据模型
大数据·笔记
寻星探路21 小时前
数据库造神计划第六天---增删改查(CRUD)(2)
java·大数据·数据库
翰林小院1 天前
【大数据专栏】流式处理框架-Apache Fink
大数据·flink
孟意昶1 天前
Spark专题-第一部分:Spark 核心概述(2)-Spark 应用核心组件剖析
大数据·spark·big data
IT学长编程1 天前
计算机毕业设计 基于Hadoop的健康饮食推荐系统的设计与实现 Java 大数据毕业设计 Hadoop毕业设计选题【附源码+文档报告+安装调试】
java·大数据·hadoop·毕业设计·课程设计·推荐算法·毕业论文
AAA修煤气灶刘哥1 天前
Kafka 入门不踩坑!从概念到搭环境,后端 er 看完就能用
大数据·后端·kafka
虫小宝1 天前
返利app的消息队列架构:基于RabbitMQ的异步通信与解耦实践
分布式·架构·rabbitmq