想做大模型开发前,先来了解一下MoE

为了实现大模型的高效训练和推理,混合专家模型MoE便横空出世。

大模型发展即将进入下一阶段但目前仍面临众多难题。为满足与日俱增的实际需求,大模型参数会越来越大,数据集类型越来越多,从而导致训练难度大增,同时也提高了推理成本。为了实现大模型的高效训练和推理,混合专家模型MoE便横空出世。

MoE结构的发展

Vanilla MoE

Export Network,用于学习不同数据,一个Gating Network用于分配每个Expert的输出权重。

Sparse MoE

Experts的输出是稀疏的,只有部分的 experts 的权重> 0,其余=0 的 expert 直接不参与计算

Expert Balancing问题

不同 experts 在竞争的过程中,会出现"赢者通吃"的现象:前期变现好的 expert 会更容易被 gating network 选择,导致最终只有少数的几个 experts 真正起作用

Transformer MoE

GShard

  • Transformer的encoder和decoder中,每隔一个(every other)FFN层,替换成position-wise MoE层
  • Top-2 gating network

Switch Transformer

简化了MoE的routing算法,gating network 每次只 route 到 1 个 expert

GLaM

  • Gshard结构
  • Scale参数量
  • 降低训练推理成本

MoE的分布式通信和MindSpore优化

MoE结构和普通的Dense模型的差异在于,其需要额外的AllToAll通信,来实现数据的路由(Gating)和结果的回收。而AllToAll通信会跨Node(服务器)、跨pod(路由),进而造成大量的通信阻塞问题

MindSpore的MoE优化

大模型训练主要瓶颈在于片上内存与卡间通信。常用的内存优化手段:

1)MoE并行:将不同的专家切分到不同的卡上,由于MoE的路由机制,需要使用AllToAll通信,将token发送到正确的卡上。对AllToAll的优化:分级AllToAll、Group-wise AllToAll等。

2)优化器异构:大模型训练常使用的adam系列优化器,其占用的内存往往是模型参数本身的2倍或以上,可以将优化器状态存储在Host内存上。

3)多副本并行:将串行的通信、计算拆分成多组,组件流水,掩盖通信时间。

MindSpore已使能上述优化,大幅提升了万亿参数稀疏模型的训练吞吐

Mixtral 8x7b MoE大模型

Mixtral的基础模型Mistral

  • RoPE
  • RMSNorm
  • Transformer decoder
  • Grouped Multi-Query Attention
  • Sliding window attention: 优化随着序列长度增加而增长的显存占用和计算消耗

Mixtral

  • 8个expert(类GPT-4)
  • Top2 gating

MoE Layer的MindSpore实现

Mindformers的Mixtral支持

  • 基于MindFormers实现Mixtral-8x7B MoE模型。关键结构: GQA, RoPE, RMSNorm, SiluMoE配置: 8 Experts, TopK=2, capacity c=1.1加载开源的Mixtral权重和tokenizer,推理结果对齐HF.
  • 4机32卡EP,PP等多维混合并行,基于自有数据集试验性训练收敛符合预期。200 epoch loss 100.02

EP=8,MP=1时性能最佳,约1147 tokens/s/p。

MoE和lifelong learning

终身学习/持续学习的性质

|------------------------------|---------------|
| 性质 | 定义 |
| 知识记忆(knowledge retention) | 模型不易产生遗忘灾难 |
| 前向迁移(forward transfer) | 利用旧知识学习新任务 |
| 后向迁移(backward transfer) | 新任务学习后提升旧任务 |
| 在线学习(online learning) | 连续数据流学习 |
| 无任务边界(No task boudaries) | 不需要明确的任务或数据定义 |
| 固定模型容量(Fixed model capacity) | 模型大小不随任务和数据变化 |

MoE模型+终身学习

|------------------------------|---|
| 性质 | |
| 知识记忆(knowledge retention) | √ |
| 前向迁移(forward transfer) | √ |
| 后向迁移(backward transfer) | - |
| 在线学习(online learning) | × |
| 无任务边界(No task boudaries) | √ |
| 固定模型容量(Fixed model capacity) | √ |

MoE的特点:

  • 多个Expert分别处理不同分布(domain/topic)的数据
  • 推理仅需要部分Expert

LLM的终身学习:

  • 世界知识底座持续学习。
  • Expert可插拔
  • Gating Network可增删。

MoE+终身学习的典型工作

  • Lifelong-MoE
  • 扩展expert和gating network的维度
  • 冻结旧的expert和gating network维度
  • 使用正则克服遗忘灾难

Pangu-sigma

Random Routed Experts:

  • 第一层,根据任务分配给不同的专家组(多个expert构成一个专家组,供一个task/domain使用)
  • 第二层,使用组内随机Gating,让专家组的expert可以负载均衡。

这样可以保证某个领域对应的expert可以直接被抽取出来作为单个模型使用。

Mixtral 8x7b Demo

Mistral-MindSpore: https://github.com/lvyufeng/mistral-mindspore

Mindformer(MoE预训练):https://gitee.com/mindspore/mindformers/

点击关注,第一时间了解华为云新鲜技术~

相关推荐
暮暮七4 小时前
理想很丰满的Ollama-OCR
linux·python·大模型·ocr·markdown·ollama
ibrahim2 天前
Llama 3.2 900亿参数视觉多模态大模型本地部署及案例展示
ai·大模型·llama·提示词
威化饼的一隅2 天前
【多模态】swift-3框架使用
人工智能·深度学习·大模型·swift·多模态
伯牙碎琴2 天前
智能体实战(需求分析助手)二、需求分析助手第一版实现(支持需求提取、整理、痛点分析、需求分类、优先级分析、需求文档生成等功能)
ai·大模型·agent·需求分析·智能体
聆思科技AI芯片2 天前
实操给桌面机器人加上超拟人音色
人工智能·机器人·大模型·aigc·多模态·智能音箱·语音交互
zaim13 天前
计算机的错误计算(一百八十七)
人工智能·ai·大模型·llm·错误·正弦/sin·误差/error
Engineer-Yao3 天前
【win10+RAGFlow+Ollama】搭建本地大模型助手(教程+源码)
docker·大模型·win10·wsl·ollama·本地大模型·ragflow
AI程序猿人3 天前
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
人工智能·pytorch·深度学习·自然语言处理·大模型·transformer·llms
zaim14 天前
计算机的错误计算(一百八十六)
人工智能·python·ai·大模型·llm·误差·decimal
西西弗Sisyphus4 天前
使用Gradio编写大模型ollama客户端 -界面版
lora·大模型·transformer·qwen2-vl