LeetCode //C - 279. Perfect Squares

279. Perfect Squares

Given an integer n, return the least number of perfect square numbers that sum to n.

A perfect square is an integer that is the square of an integer; in other words, it is the product of some integer with itself. For example, 1, 4, 9, and 16 are perfect squares while 3 and 11 are not.

Example 1:

Input: n = 12
Output: 3
Explanation: 12 = 4 + 4 + 4.

Example 2:

Input: n = 13
Output: 2
Explanation: 13 = 4 + 9.

Constraints:
  • 1 < = n < = 1 0 4 1 <= n <= 10^4 1<=n<=104

From: LeetCode

Link: 279. Perfect Squares


Solution:

Ideas:
  1. Initialize an array dp with size n+1 and fill it with INT_MAX to represent infinity, since we are looking for the minimum value. This array will store the least number of perfect squares that sum to every number up to n.
  2. Set dp[0] = 0 because there are 0 perfect squares that sum to 0.
  3. Use nested loops to populate the dp array. The outer loop iterates through each number from 1 to n, and the inner loop iterates through each square number jj that could be used to form i. It updates dp[i] to the minimum between its current value and dp[i - jj] + 1.
  4. After filling the dp array, dp[n] contains the least number of perfect squares that sum to n.
Code:
c 复制代码
int numSquares(int n) {
    int dp[n+1];
    for(int i = 0; i <= n; i++) {
        dp[i] = INT_MAX;
    }
    dp[0] = 0;
    
    for(int i = 1; i <= n; i++) {
        for(int j = 1; j*j <= i; j++) {
            if(dp[i - j*j] != INT_MAX) {
                dp[i] = dp[i] < dp[i - j*j] + 1 ? dp[i] : dp[i - j*j] + 1;
            }
        }
    }
    
    return dp[n];
}
相关推荐
小O的算法实验室13 分钟前
2024年ESWA SCI1区TOP,基于自适应模糊惩罚的多约束无人机路径规划状态转移算法,深度解析+性能实测
算法·论文复现·智能算法·智能算法改进
一条大祥脚19 分钟前
Codeforces Round 1072 (Div. 3) 树形背包|线段树二分|区间并查集维护区间合并/set维护区间分裂
算法·深度优先·图论
Xの哲學30 分钟前
Linux SKB: 深入解析网络包的灵魂
linux·服务器·网络·算法·边缘计算
无限进步_34 分钟前
【C语言&数据结构】二叉树遍历:从前序构建到中序输出
c语言·开发语言·数据结构·c++·算法·github·visual studio
CodeByV38 分钟前
【算法题】哈希
算法·哈希算法
独自破碎E41 分钟前
【层序遍历】序列化二叉树
leetcode
天赐学c语言44 分钟前
1.14 - 用栈实现队列 && 对模板的理解以及模板和虚函数区别
c++·算法·leecode
高洁0144 分钟前
AI智能体搭建(3)
人工智能·深度学习·算法·数据挖掘·知识图谱
不知名XL1 小时前
day24 贪心算法 part02
算法·贪心算法
AI科技星1 小时前
时空几何:张祥前统一场论20核心公式深度总结
人工智能·线性代数·算法·机器学习·生活