LeetCode //C - 279. Perfect Squares

279. Perfect Squares

Given an integer n, return the least number of perfect square numbers that sum to n.

A perfect square is an integer that is the square of an integer; in other words, it is the product of some integer with itself. For example, 1, 4, 9, and 16 are perfect squares while 3 and 11 are not.

Example 1:

Input: n = 12
Output: 3
Explanation: 12 = 4 + 4 + 4.

Example 2:

Input: n = 13
Output: 2
Explanation: 13 = 4 + 9.

Constraints:
  • 1 < = n < = 1 0 4 1 <= n <= 10^4 1<=n<=104

From: LeetCode

Link: 279. Perfect Squares


Solution:

Ideas:
  1. Initialize an array dp with size n+1 and fill it with INT_MAX to represent infinity, since we are looking for the minimum value. This array will store the least number of perfect squares that sum to every number up to n.
  2. Set dp[0] = 0 because there are 0 perfect squares that sum to 0.
  3. Use nested loops to populate the dp array. The outer loop iterates through each number from 1 to n, and the inner loop iterates through each square number jj that could be used to form i. It updates dp[i] to the minimum between its current value and dp[i - jj] + 1.
  4. After filling the dp array, dp[n] contains the least number of perfect squares that sum to n.
Code:
c 复制代码
int numSquares(int n) {
    int dp[n+1];
    for(int i = 0; i <= n; i++) {
        dp[i] = INT_MAX;
    }
    dp[0] = 0;
    
    for(int i = 1; i <= n; i++) {
        for(int j = 1; j*j <= i; j++) {
            if(dp[i - j*j] != INT_MAX) {
                dp[i] = dp[i] < dp[i - j*j] + 1 ? dp[i] : dp[i - j*j] + 1;
            }
        }
    }
    
    return dp[n];
}
相关推荐
mingchen_peng1 分钟前
第一章 初识智能体
算法
百锦再3 分钟前
国产数据库的平替亮点——关系型数据库架构适配
android·java·前端·数据库·sql·算法·数据库架构
消失的旧时光-194329 分钟前
用 C 实现一个简化版 MessageQueue
c语言·开发语言
晨曦夜月30 分钟前
笔试强训day5
数据结构·算法
H_z___32 分钟前
Hz的计数问题总结
数据结构·算法
她说彩礼65万33 分钟前
C# 反射
java·算法·c#
练习时长一年33 分钟前
LeetCode热题100(搜索插入位置)
数据结构·算法·leetcode
hz_zhangrl34 分钟前
CCF-GESP 等级考试 2025年9月认证C++六级真题解析
c++·算法·青少年编程·程序设计·gesp·2025年9月gesp·gesp c++六级
喇一渡渡1 小时前
Java力扣---滑动窗口(1)
java·算法·排序算法