(七步走写摘要): UserInformation bottleneck fusion for deep multi-view clustering

原摘要: Multi-view clustering aims to employ semantic information from multiple perspectives to accomplish the clustering task. However, a crucial concern in this domain is the selection of distinctive features. Most existing methods map data into a single feature space and then construct a similarity matrix, which often leads to an insufficient utilisation of intrinsic information in the data, meanwhile neglecting the impact of noise in the data, resulting in poor representation learning performance. Information bottleneck (IB) is a theoretical model based on information theory, the core idea of which is to extract information that is useful for a given task by selecting an appropriate representation and discarding redundant and irrelevant information. In this study, we propose an innovative IB fusion model for deep multi-view clustering (IBFDMVC), which operates on two distinct feature spaces and reconstructs semantic information in a parallel manner. IBFDMVC consists of three modules. The encoder module uses two linear encoding layers to learn and obtain embeddings with different dimensions. The fusion module adopts a collaborative training learning concept, where contrastive learning is first employed to enhance representation and IB theory is further used to reduce representation noise. Finally, clustering is performed using k-means in the clustering module. Compared with state-of-the-art multi-view clustering methods, IBFDMVC achieves better results, verifying the significant role of IB theory in providing a robust framework for feature selection and semantic information extraction in multi-view data analysis.

七步分如下(每一句都要有翻译):

  1. 交代背景:

    • "Multi-view clustering aims to employ semantic information from multiple perspectives to accomplish the clustering task."
    • 多视图聚类旨在利用来自多个视角的语义信息来完成聚类任务。
  2. 概括当前方法:

    • "Most existing methods map data into a single feature space and then construct a similarity matrix."
    • 大多数现有方法将数据映射到单一特征空间,然后构建相似性矩阵。
  3. 现有方法的不足:

    • "This often leads to an insufficient utilisation of intrinsic information in the data, meanwhile neglecting the impact of noise in the data, resulting in poor representation learning performance."
    • 这通常导致对数据中内在信息的利用不足,同时忽略了数据中噪声的影响,导致表示学习性能差。
  4. 提出当前的方法:

    • "We propose an innovative IB fusion model for deep multi-view clustering (IBFDMVC)."
    • 我们提出了一种创新的深度多视图聚类信息瓶颈融合模型(IBFDMVC)。
  5. 简要介绍方法:

    • "IBFDMVC operates on two distinct feature spaces and reconstructs semantic information in a parallel manner."
    • IBFDMVC在两个不同的特征空间上操作,并以并行方式重构语义信息。
  6. 如何实现或优化:

    • "The fusion module adopts a collaborative training learning concept, where contrastive learning is first employed to enhance representation and IB theory is further used to reduce representation noise."
    • 融合模块采用了协作训练学习概念,首先使用对比学习增强表示,然后进一步使用信息瓶颈理论减少表示噪声。
  7. 实验介绍:

    • "Compared with state-of-the-art multi-view clustering methods, IBFDMVC achieves better results."
    • 与最先进的多视图聚类方法相比,IBFDMVC取得了更好的结果。

总结: 本研究提出了一种基于信息瓶颈理论的深度多视图聚类新模型(IBFDMVC),该模型通过在两个独特的特征空间上操作并以并行方式重构语义信息来解决传统多视图聚类方法中特征选择不足和忽略数据噪声的问题。通过采用对比学习和信息瓶颈理论相结合的融合模块,IBFDMVC有效地增强了数据表示并减少了表示噪声,最终通过k-means聚类模块完成聚类任务

相关推荐
代码星辰14 分钟前
MySQL 面试题——深度分页优化
数据库·mysql·覆盖索引·深度分页
爱学java的ptt1 小时前
场景题:设计计数系统(例如点赞)
笔记
BryanGG1 小时前
【英语】自然拼读学习笔记
笔记·学习
前路不黑暗@2 小时前
Java项目:Java脚手架项目通用基类和常量类的封装(九)
java·spring boot·笔记·学习·spring cloud·maven·intellij-idea
XP62262 小时前
MySQL 数据库连接数查询、配置
数据库·mysql
之歆2 小时前
MySQL 主从复制完全指南
android·mysql·adb
zsyf19873 小时前
MySQL如何执行.sql 文件:详细教学指南
数据库·mysql
强子感冒了3 小时前
JavaScript 零基础入门笔记:核心概念与语法详解
开发语言·javascript·笔记
马猴烧酒.3 小时前
【面试八股|RabbitMQ】RabbitMQ常见面试题详解笔记
笔记·面试·rabbitmq
智者知已应修善业4 小时前
【项目配置时间选择自己还是团体】2025-3-31
c语言·c++·经验分享·笔记·算法