基于协同过滤的旅游推荐系统设计与实现

基于协同过滤的旅游推荐系统设计与实现

在当今旅游业蓬勃发展的背景下,人们对于旅游体验的需求日益增加,如何为用户提供更加个性化、精准的旅游推荐成为了旅游行业的一个重要课题。为解决这一问题,我们设计并实现了一个基于协同过滤的旅游推荐系统,采用了Python语言、Flask技术、B/S架构和MySQL数据库。数据集则是通过爬取去哪儿旅游景点数据得到的。

项目背景与意义

在传统的旅游推荐系统中,推荐结果往往缺乏个性化,用户体验较为一般。为了提升用户的满意度和体验,我们基于协同过滤算法设计了这一旅游推荐系统。通过分析用户的历史行为和其他用户的兴趣偏好,系统能够准确推测出用户可能感兴趣的景区,并根据用户的喜好为其推荐合适的景点,从而提升用户的旅游体验。

功能介绍

用户端功能

  1. 登录注册: 用户可以注册账号并登录系统,实现个性化服务。
  2. 景区信息查询: 用户可以查询各个景区的详细信息,了解景点情况。
  3. 景区推荐: 通过协同过滤推荐算法,为用户推荐个性化的景区,提升用户体验。
  4. 景区收藏: 用户可以收藏喜欢的景区,方便后续查看和参考。
  5. 数据可视化: 用户可以直观地查看景区的相关信息,增强用户体验和参考价值。

管理员端功能

  1. 登录: 管理员可以登录系统进行管理操作,保证系统安全性。
  2. 景区信息管理: 管理员可以添加、编辑或删除景区信息,维护系统数据的准确性。
  3. 地区信息管理: 管理员可以管理不同地区的信息,保证信息的完整性和准确性。
  4. 用户信息管理: 管理员可以查看和管理用户的基本信息,维护用户数据的安全性。
  5. 游记信息管理: 管理员可以管理用户上传的游记信息,确保信息的合法性和质量。
  6. 日志信息查看: 管理员可以查看系统的运行日志,及时发现和解决问题,保障系统稳定运行。

创新点与优势

该系统的创新点在于引入了协同过滤推荐算法,为用户提供更加个性化的旅游推荐体验。通过分析用户的历史行为和其他用户的兴趣偏好,系统能够准确推测出用户可能感兴趣的景区,并根据用户的喜好为其推荐合适的景点。这一性化推荐功能使得用户在旅游过程中能够更好地发现和探索符合自己兴趣的景区,提升旅游体验。


结语

通过本项目的设计与实现,我们不仅提升了用户的旅游体验,还为旅游推荐系统的发展提供了新的思路与方法。基于协同过滤的旅游推荐系统在实际应用中具有广阔的前景与潜力,未来我们将继续优化系统性能,拓展功能模块,为用户提供更加智能、便捷的旅游服务。

相关推荐
小白学大数据3 天前
应对反爬:使用Selenium模拟浏览器抓取12306动态旅游产品
selenium·测试工具·旅游
pingao1413783 天前
景区负氧离子气象站:引领绿色旅游,畅吸清新每一刻
大数据·人工智能·旅游
码界筑梦坊4 天前
278-基于Django的协同过滤旅游推荐系统
python·数据分析·django·毕业设计·旅游
AiPy_极客团长4 天前
用AI做旅游攻略,真能比人肉整理靠谱?
旅游
毕设源码-钟学长5 天前
【开题答辩全过程】以 靖西市旅游网站为例,包含答辩的问题和答案
旅游
【ql君】qlexcel7 天前
好用的电脑软件、工具推荐和记录
电脑软件·推荐·电脑工具
小蒜学长10 天前
基于django的梧桐山水智慧旅游平台设计与开发(代码+数据库+LW)
java·spring boot·后端·python·django·旅游
阿里-于怀12 天前
携程旅游的 AI 网关落地实践
人工智能·网关·ai·旅游·携程·higress·ai网关
麦麦大数据15 天前
求职推荐大数据可视化平台招聘系统 Vue+Flask python爬虫 前后端分离
vue.js·爬虫·python·信息可视化·flask·推荐算法·协同过滤
专注数据的痴汉19 天前
「数据获取」《中国文化文物与旅游统计年鉴》(1996-2024)(获取方式看绑定的资源)
旅游