【机器学习】生成对抗网络GAN

概述

生成对抗网络(Generative Adversarial Network,GAN)是一种深度学习模型架构,由生成器(Generator)和判别器(Discriminator)两部分组成,旨在通过对抗训练的方式生成逼真的数据样本。

GAN 的基本思想是让生成器和判别器相互竞争、不断优化,以达到生成高质量数据的目的。生成器的任务是生成尽可能逼真的数据样本,而判别器的任务是区分真实数据和生成器生成的假数据。

通俗的讲,就是让生成器生成的数据更真,真到能把判别器"骗"过去。生成器和判别器两者不断对抗、不断进步,从而使得最后生成的结果更加逼真。

步骤

  1. 生成器训练:

    生成器接收一个随机噪声向量作为输入,并生成一个与真实数据类似的数据样本。

    生成器生成的假数据样本被送入判别器和真实数据一起进行训练,目标是让判别器无法区分真实数据和生成的假数据。

  2. 判别器训练:

    判别器接收真实数据和生成器生成的假数据,学习区分两者。

    判别器的目标是最大化正确地区分真实数据和生成的假数据,从而提高识别能力。

  3. 对抗训练:

    在训练过程中,生成器和判别器相互竞争、对抗地优化自己的参数。

    生成器希望生成的假数据足够逼真,以欺骗判别器;而判别器则希望能够准确地区分真假数据。

    这种对抗训练过程推动了生成器生成更逼真的数据样本,同时也促使判别器不断提高识别真假数据的能力。

GAN 的训练过程具有挑战性,需要平衡生成器和判别器的训练,避免出现训练不稳定或模式崩溃等问题。然而,当训练成功时,GAN 能够生成高质量、多样性的数据样本,被广泛应用于图像生成、文本生成、视频生成等领域。

相关推荐
饕餮怪程序猿2 分钟前
C++:大型语言模型与智能系统底座的隐形引擎
c++·人工智能
hzp66625 分钟前
基于大语言模型(LLM)的多智能体应用的新型服务框架——Tokencake
人工智能·语言模型·大模型·llm·智能体·tokencake
摘星编程28 分钟前
昇腾NPU性能调优实战:INT8+批处理优化Mistral-7B全记录
人工智能·华为·gitcode·昇腾
中科岩创32 分钟前
陕西某地煤矿铁塔自动化监测服务项目
人工智能·物联网·自动化
亚马逊云开发者36 分钟前
Agentic AI基础设施实践经验系列(三):Agent记忆模块的最佳实践
人工智能
小花皮猪39 分钟前
多模态 AI 时代的数据困局与机遇,Bright Data 赋能LLM 训练以及AEO场景
人工智能·多模态·ai代理·aeo
爱吃烤鸡翅的酸菜鱼1 小时前
深度解析《AI+Java编程入门》:一本为零基础重构的Java学习路径
java·人工智能·后端·ai
snakecy1 小时前
智能家居技术发展与应用综述
人工智能·区块链
飞哥数智坊1 小时前
实测 TRAE SOLO 新模型:半小时搓出一个能用的抽奖系统
人工智能·trae·solo
Juchecar1 小时前
母语,塑造和构成了我们的思维过程本身
人工智能