【机器学习】生成对抗网络GAN

概述

生成对抗网络(Generative Adversarial Network,GAN)是一种深度学习模型架构,由生成器(Generator)和判别器(Discriminator)两部分组成,旨在通过对抗训练的方式生成逼真的数据样本。

GAN 的基本思想是让生成器和判别器相互竞争、不断优化,以达到生成高质量数据的目的。生成器的任务是生成尽可能逼真的数据样本,而判别器的任务是区分真实数据和生成器生成的假数据。

通俗的讲,就是让生成器生成的数据更真,真到能把判别器"骗"过去。生成器和判别器两者不断对抗、不断进步,从而使得最后生成的结果更加逼真。

步骤

  1. 生成器训练:

    生成器接收一个随机噪声向量作为输入,并生成一个与真实数据类似的数据样本。

    生成器生成的假数据样本被送入判别器和真实数据一起进行训练,目标是让判别器无法区分真实数据和生成的假数据。

  2. 判别器训练:

    判别器接收真实数据和生成器生成的假数据,学习区分两者。

    判别器的目标是最大化正确地区分真实数据和生成的假数据,从而提高识别能力。

  3. 对抗训练:

    在训练过程中,生成器和判别器相互竞争、对抗地优化自己的参数。

    生成器希望生成的假数据足够逼真,以欺骗判别器;而判别器则希望能够准确地区分真假数据。

    这种对抗训练过程推动了生成器生成更逼真的数据样本,同时也促使判别器不断提高识别真假数据的能力。

GAN 的训练过程具有挑战性,需要平衡生成器和判别器的训练,避免出现训练不稳定或模式崩溃等问题。然而,当训练成功时,GAN 能够生成高质量、多样性的数据样本,被广泛应用于图像生成、文本生成、视频生成等领域。

相关推荐
Learn Beyond Limits14 分钟前
TensorFlow Implementation of Content-Based Filtering|基于内容过滤的TensorFlow实现
人工智能·python·深度学习·机器学习·ai·tensorflow·吴恩达
是Yu欸18 分钟前
【AI视频】从单模型,到AI Agent工作流
人工智能·ai·ai作画·aigc·音视频·实时音视频
AI人工智能+29 分钟前
发票识别技术:结合OCR与AI技术,实现纸质票据高效数字化,推动企业智能化转型
人工智能·nlp·ocr·发票识别
用户51914958484536 分钟前
Aniyomi扩展开发指南与Google Drive集成方案
人工智能·aigc
ezl1fe38 分钟前
第零篇:把 Agent 跑起来的最小闭环
人工智能·后端·agent
说私域41 分钟前
开源链动2+1模式AI智能名片S2B2C商城小程序在竞争激烈的中低端面膜服装行业中的应用与策略
大数据·人工智能·小程序
佛喜酱的AI实践43 分钟前
Claude Code配置魔法:从单人编程到专属AI团队协作
人工智能·claude
文心快码BaiduComate1 小时前
文心快码Comate3.5S更新,用多智能体协同做个健康管理应用
前端·人工智能·后端
叶楊1 小时前
PEFT适配器加载
人工智能·深度学习·机器学习
Tezign_space1 小时前
AI用户洞察新纪元:atypica.AI如何重塑商业决策逻辑
人工智能·ai智能体·atypica