ElasticSearch之文档的存储

写在前面

本文看下文档的存储相关内容。

1:如何确定文档存储在哪个分片?

我们需要确保文档均匀分布在所有的分片中,避免某些部分机器空闲,部分机器繁忙的情况出现,想要实现均匀分布我们可以考虑如下的几种分片路由算法:

复制代码
1:round robin 轮询
    优点:简单
    缺点:数据更新、查询,删除的效率低,因为无法直接确定数据存储的分片,需要轮询,时间复杂度为O(n) 。
2:维护一个文档和分片的对应关系
    优点:简单
    缺点:需要额外维护对应关系,增加存储的成本
3:动态哈希,实时计算
    优点:简单,快速
    缺点:需要依赖于分片来计算,所以,分片数不能动态变更,除非reindex

以上三种方案,es采用的第三种,动态哈希,因为缺点相对来说,影响不是特别大,因为分片数我们完全可以事先确定好一个值,就算是确实需要修改分片数,也只需要在某次升级期间来完成即可,而前两种方案都会降低每次查询的速度,所以不可取。

动态哈希算法公式为hash(_routing)%number_of_primary_shards,这里的_routing默认是文档id,也可以通过如下方式来指定:

1:通过指定的方式,我们可以实现某些场景下某些数据放在同一个分片的需求。

2:es中修改分片数需要reindex的根本原因就在于,计算哈希依赖于分片数,如果分片数改变,路由分片的结果将会改变,如果不reindex将会导致大量文档无法查询。

具体如下:

2:更新和删除文档的流程

  • 更新文档的流程
  • 删除文档的流程

写在后面

参考文章列表

相关推荐
IT成长日记2 小时前
Elasticsearch安全加固指南:启用登录认证与SSL加密
安全·elasticsearch·ssl
Elasticsearch3 小时前
现在支持通过 EDOT Collector 在 Kubernetes 上动态发现工作负载
elasticsearch
上等猿21 小时前
Elasticsearch笔记
java·笔记·elasticsearch
qq_5470261791 天前
Elasticsearch 评分机制
大数据·elasticsearch·jenkins
yangmf20401 天前
私有知识库 Coco AI 实战(一):Linux 平台部署
大数据·linux·运维·人工智能·elasticsearch·搜索引擎·全文检索
Elastic 中国社区官方博客1 天前
Elasticsearch:理解政府中的人工智能 - 应用、使用案例和实施
大数据·人工智能·elasticsearch·机器学习·搜索引擎·ai·全文检索
Elasticsearch1 天前
RAG vs. Fine Tuning ,一种实用方法
elasticsearch
Elasticsearch1 天前
了解可观察性指标:类型、黄金信号和最佳实践
elasticsearch
IT成长日记1 天前
Elasticsearch安全与权限控制指南
安全·elasticsearch
算家云1 天前
Ubuntu 22.04安装MongoDB:GLM4模型对话数据收集与微调教程
大数据·人工智能·mongodb·ubuntu·elasticsearch·算家云·glm4微调