机器学习_10、集成学习-AdaBoost

AdaBoost

AdaBoost(Adaptive Boosting的简称)是一种集成学习方法,它的核心思想在于将多个弱学习器组合起来,形成一个强学习器。通过这种方式,AdaBoost能够显著提高分类性能。下面详细介绍AdaBoost的主要概念和工作原理:

1. 弱学习器(Weak Learner)

  • 弱学习器指的是那些仅比随机猜测略好的模型,例如决策树、小神经网络等。在AdaBoost中,通常使用深度非常浅的决策树(如单层决策树,也称为决策树桩)作为弱学习器。

2. 自适应(Adaptive)

  • AdaBoost之所以称为自适应增强,是因为它能够根据前一个学习器的表现调整数据的权重分布,使得之前被错误分类的数据在后续的学习器中获得更多的关注。这种自适应的过程使得模型能够专注于那些难以正确分类的样本。

3. 工作原理

  • 初始化权重:开始时,每个训练样本被赋予相同的权重。
  • 循环训练弱学习器 :AdaBoost算法会进行多轮迭代,每一轮都会训练一个新的弱学习器。在每一轮中:
    • 基于当前的权重分布,从训练集中训练出一个弱学习器。
    • 计算该弱学习器的错误率。
    • 根据错误率计算该弱学习器的权重(即该学习器对最终结果的贡献)。错误率越低的学习器权重越大。
    • 更新训练样本的权重,增加被当前学习器错误分类样本的权重,减少正确分类样本的权重。
    • 进入下一轮迭代。
  • 组合弱学习器:所有的弱学习器根据各自的权重组合成最终的模型。分类决策通常是通过对所有学习器的加权投票来实现的。

4. 特点和优势

  • 准确率高:通过组合多个弱学习器,AdaBoost能够达到很高的准确率。
  • 易于编码:AdaBoost算法相对简单,易于实现。
  • 自动处理特征选择:AdaBoost在训练过程中会自动选择有用的特征,从而简化了模型的复杂度和提高了模型的泛化能力。
  • 不太容易过拟合:在弱学习器的选择和数量控制得当的情况下,AdaBoost不太容易过拟合。

5. 应用

AdaBoost被广泛应用于各种分类问题,包括二分类和多分类问题,如人脸识别、客户流失预测、文本分类等领域。

复制代码
#coding=utf-8
#AdaBoostClassifier.py
import pandas as pd
from sklearn.model_selection import train_test_split
#from sklearn.naive_bayes import GaussianNB
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import AdaBoostClassifier

# 加载数据
filename="./glass.data"
glass_data = pd.read_csv(filename,index_col=0,header=None)
# 先从DataFrame中取出数组值(.value)
X,y = glass_data.iloc[:,:-1].values, glass_data.iloc[:,-1].values
#X,y = glass_data.iloc[:,:-1], glass_data.iloc[:,-1]
# 划分训练集与测试集
X_train, X_test, y_train, y_test = train_test_split(
    X, y, shuffle=True, stratify=y, random_state=1)

# 创建基本分类器对象
#base_clf = GaussianNB()
base_clf = DecisionTreeClassifier(max_depth=2,random_state=0)
# 创建AdaBoostingClassifier对象
ada_clf = AdaBoostClassifier(base_estimator=base_clf,
                             random_state=0,n_estimators=1000)

for clf in (base_clf, ada_clf):
    clf.fit(X_train, y_train)
    print(clf.__class__.__name__,"训练集准确率:",
          clf.score(X_train, y_train), sep="")
    print(clf.__class__.__name__,"测试集准确率:",
          clf.score(X_test, y_test), sep="") 
    print(clf.__class__.__name__,
          "对测试集前2个样本预测的分类标签:\n",
          clf.predict(X_test[:2]), sep="")
    print(clf.__class__.__name__,
          "对测试集前2个样本预测的分类概率:\n",
          clf.predict_proba(X_test[:2]), sep="") 
    print("分类器中的标签排列:",clf.classes_)
    # 概率预测转化为标签预测
    print("根据预测概率推算预测标签:",end="")
    for i in clf.predict_proba(X_test[:2]).argmax(axis=1):
        print(clf.classes_[i], end="  ")
    print()
    
print("测试集前2个样本的真实标签:",y_test[:2],sep="")
相关推荐
张较瘦_34 分钟前
[论文阅读] 人工智能+软件工程 | 结对编程中的知识转移新图景
人工智能·软件工程·结对编程
小Q小Q2 小时前
cmake编译LASzip和LAStools
人工智能·计算机视觉
yzx9910132 小时前
基于 Q-Learning 算法和 CNN 的强化学习实现方案
人工智能·算法·cnn
token-go2 小时前
[特殊字符] 革命性AI提示词优化平台正式开源!
人工智能·开源
cooldream20093 小时前
华为云Flexus+DeepSeek征文|基于华为云Flexus X和DeepSeek-R1打造个人知识库问答系统
人工智能·华为云·dify
Blossom.1186 小时前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
DFminer7 小时前
【LLM】fast-api 流式生成测试
人工智能·机器人
郄堃Deep Traffic7 小时前
机器学习+城市规划第十四期:利用半参数地理加权回归来实现区域带宽不同的规划任务
人工智能·机器学习·回归·城市规划
GIS小天8 小时前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年6月7日第101弹
人工智能·算法·机器学习·彩票
阿部多瑞 ABU8 小时前
主流大语言模型安全性测试(三):阿拉伯语越狱提示词下的表现与分析
人工智能·安全·ai·语言模型·安全性测试