练习3-softmax分类(李沐函数简要解析)

环境为:练习1的环境

网址为:https://www.bilibili.com/video/BV1K64y1Q7wu/?spm_id_from=333.1007.top_right_bar_window_history.content.click

代码简要解析

导入模块

导入PyTorch

导入Torch中的nn模块

导入d2l中torch模块 并命名为d2l

import torch
from torch import nn
from d2l import torch as d2l

获取数据

从Fashion-MNIST中获取batch_size个数据 注意此处为28*28的像素图像 d2l.load_data_fashion_mnist(batch_size) 函数加载 Fashion-MNIST 数据集,并返回两个迭代器

batch_size=100
train_iter,test_iter=d2l.load_data_fashion_mnist(batch_size)

初始化模型和参数

Flatten()将输入为28*28的像素图像摊开成一组784长的数组 作为特征值 输入

nn.Linear() 为784输入 10输出的层

net.apply(init); 是将其中init函数作为所有可变参数的初始化方式 注意:m是层 既对每层m进行判断 符合条件对m的权重进行初始化

type(m) == nn.Linear 用于检查变量 m 是否属于 PyTorch 中的线性层(nn.Linear

net=nn.Sequential(nn.Flatten(),nn.Linear(784,10))
def init_weights(m):
    if type(m)==nn.Linear:
            nn.init.normal_(m.weight,std=0.01)
        
net.apply(init_weights)

初始化损失函数 这里为交叉熵损失函数

loss=nn.CrossEntropyLoss(reduction='none')

设定梯度下降算法

torch.optim.SGD()

trainer=torch.optim.SGD(net.parameters(),lr=0.1)

训练

这里的d2l是李沐老师自己写的,想要运行成功,理论上需要把d2l下载下来

网址:https://github.com/d2l-ai/d2l-zh

num_epochs=10;
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

我所学习到的

获得Fashion-MNIST的数据

train_iter,test_iter=d2l.load_data_fashion_mnist(batch_size)

对输入进行平铺处理 其本质是把每个像素点都当作特征值

nn.Flatten()

多层的权重初始化

net.apply(init_weights)

交叉熵损失函数

loss=nn.CrossEntropy()
相关推荐
CV学术叫叫兽1 小时前
快速图像识别:落叶植物叶片分类
人工智能·分类·数据挖掘
布说在见2 小时前
个人实施工作的一天 —— 繁琐的数据输入与未来的句里录数据
经验分享·实习实施
梅见十柒3 小时前
wsl2中kali linux下的docker使用教程(教程总结)
linux·经验分享·docker·云原生
CV学术叫叫兽3 小时前
一站式学习:害虫识别与分类图像分割
学习·分类·数据挖掘
Sxiaocai4 小时前
使用TensorFlow实现简化版 GoogLeNet 模型进行 MNIST 图像分类
分类·tensorflow·neo4j
zhangfeng11334 小时前
pytorch 的交叉熵函数,多分类,二分类
人工智能·pytorch·分类
管家婆客服中心4 小时前
提成制是什么?如何高效管理提成制?
经验分享·管家婆软件
YRr YRr5 小时前
如何使用 PyTorch 实现图像分类数据集的加载和处理
pytorch·深度学习·分类
zy张起灵10 小时前
48v72v-100v转12v 10A大功率转换电源方案CSM3100SK
经验分享·嵌入式硬件·硬件工程
爱喝白开水a21 小时前
Sentence-BERT实现文本匹配【分类目标函数】
人工智能·深度学习·机器学习·自然语言处理·分类·bert·大模型微调