消息队列-kafka-服务端处理架构(架构,Topic文件结构,服务端数据的一致性)

服务端处理架构

资料来源于网络

网络线程池:

接受请求,num.network.threads,默认为 3,专门处理客户的发送的请求。

IO 线程池:

num.io.threads,默认为 8,专门处理业务请求。也就是它不负责发送响应,发送响应还是由网络线程池处理。

当遇到性能瓶颈的时候可以适当的调整这两个参数

服务端消息存储文件布局

1 Topic 文件结构

Segment 文件结构

命名规则:一个 segment 的名称其实是当前 segment 第一条消息的偏移量,也就是说一个segement如果写不下了就会生成新的segment。
查找机制

  • 将所有的 segment 文件名进行生序排列然后找到偏移量最后落在哪个 segment 对象上(采用二分,因为文件名是有序的)。
  • 继续从这个 segment 里面的 .index 文件找到消息的物理偏移量,也就是对应图中的.index偏移量,最后拿着物理偏移量去 .log 文件找到最终的实体消息,非常的迅速。
    删除机制
    按照时间过期多少删(默认7天)、按照大小来删

服务端数据的一致性

其实也就是分区和副本之前的一致性。比如说我们P0有9条消息,因为每个节点同步数据(网络,IO等原因)所以导致R0 和 R3 之间的数据并不一致。

HW:高水位,消费者消费最高的位置,其实也就是木桶原理,所以只能到下面图中的第四条消息。

LEO:log写文件的最后一个位置。

ISR:也就是一个分区和备份节点的队列。比如P0,R0,R3.

如果我们的备份节点挂掉了:

1 首先它会从ISR中剔除,当恢复正常的时候,会向主分片获取 HW 高水位线,与自己的 LEO 比对,如果自己的 LEO 超过 HW 则干掉超过的部分,小于的话就从主分片复制数据过来。

2 复制的时候,如果复制之后的 LEO 与 HW 持平的话,那么就会重新加入到 ISR 同步队列中

如果我们的主分区挂掉了:

1 从ISR中剔除,选择数据最多的数据为主分片。

2 活过来的时候,发现已经有顶替的 leader 角色(主分片)了,那么就跟随,也就是向 leader 获取 HW 高水位线,与自己的 LEO 比对,大于 LEO 则删除,小于 LEO 则从 leader 这边复制数据过去。

3 复制数据的进度如果赶上了主分片的 HW 的话,那么就继续加入到 ISR 队列中。
但是我们主分片数据最多,为什么要把后面的数据干掉呢,这样不是会丢失消息吗?

这样其实是保证了数据的一致性,也就是保证分区和备份节点的都是同样的进度。

数据不丢失问题是由Producer来保证的,也就是有重试机制,如果没有发送成功的话,就会从新发送,但是消费者一侧一定要做幂等。

相关推荐
Tadas-Gao27 分钟前
缸中之脑:大模型架构的智能幻象与演进困局
人工智能·深度学习·机器学习·架构·大模型·llm
晚霞的不甘1 小时前
Flutter for OpenHarmony 可视化教学:A* 寻路算法的交互式演示
人工智能·算法·flutter·架构·开源·音视频
SoleMotive.2 小时前
谢飞机爆笑面经:Java大厂3轮12问真题拆解(Redis穿透/Kafka分区/MCP Agent)
redis·spring cloud·kafka·java面试·mcp
代码改善世界2 小时前
CANN深度解构:中国AI系统软件的原创性突破与架构创新
大数据·人工智能·架构
晚霞的不甘3 小时前
Flutter for OpenHarmony 实现计算几何:Graham Scan 凸包算法的可视化演示
人工智能·算法·flutter·架构·开源·音视频
Tadas-Gao3 小时前
TCP粘包现象的深度解析:从协议本质到工程实践
网络·网络协议·云原生·架构·tcp
爆米花byh3 小时前
在RockyLinux9环境的Kafka4.1.1单机版安装(无ZK依赖)
中间件·kafka
礼拜天没时间.4 小时前
深入Docker架构——C/S模式解析
linux·docker·容器·架构·centos
啊森要自信4 小时前
CANN runtime 深度解析:异构计算架构下运行时组件的性能保障与功能增强实现逻辑
深度学习·架构·transformer·cann
WindrunnerMax4 小时前
从零实现富文本编辑器#11-Immutable状态维护与增量渲染
前端·架构·前端框架