消息队列-kafka-服务端处理架构(架构,Topic文件结构,服务端数据的一致性)

服务端处理架构

资料来源于网络

网络线程池:

接受请求,num.network.threads,默认为 3,专门处理客户的发送的请求。

IO 线程池:

num.io.threads,默认为 8,专门处理业务请求。也就是它不负责发送响应,发送响应还是由网络线程池处理。

当遇到性能瓶颈的时候可以适当的调整这两个参数

服务端消息存储文件布局

1 Topic 文件结构

Segment 文件结构

命名规则:一个 segment 的名称其实是当前 segment 第一条消息的偏移量,也就是说一个segement如果写不下了就会生成新的segment。
查找机制

  • 将所有的 segment 文件名进行生序排列然后找到偏移量最后落在哪个 segment 对象上(采用二分,因为文件名是有序的)。
  • 继续从这个 segment 里面的 .index 文件找到消息的物理偏移量,也就是对应图中的.index偏移量,最后拿着物理偏移量去 .log 文件找到最终的实体消息,非常的迅速。
    删除机制
    按照时间过期多少删(默认7天)、按照大小来删

服务端数据的一致性

其实也就是分区和副本之前的一致性。比如说我们P0有9条消息,因为每个节点同步数据(网络,IO等原因)所以导致R0 和 R3 之间的数据并不一致。

HW:高水位,消费者消费最高的位置,其实也就是木桶原理,所以只能到下面图中的第四条消息。

LEO:log写文件的最后一个位置。

ISR:也就是一个分区和备份节点的队列。比如P0,R0,R3.

如果我们的备份节点挂掉了:

1 首先它会从ISR中剔除,当恢复正常的时候,会向主分片获取 HW 高水位线,与自己的 LEO 比对,如果自己的 LEO 超过 HW 则干掉超过的部分,小于的话就从主分片复制数据过来。

2 复制的时候,如果复制之后的 LEO 与 HW 持平的话,那么就会重新加入到 ISR 同步队列中

如果我们的主分区挂掉了:

1 从ISR中剔除,选择数据最多的数据为主分片。

2 活过来的时候,发现已经有顶替的 leader 角色(主分片)了,那么就跟随,也就是向 leader 获取 HW 高水位线,与自己的 LEO 比对,大于 LEO 则删除,小于 LEO 则从 leader 这边复制数据过去。

3 复制数据的进度如果赶上了主分片的 HW 的话,那么就继续加入到 ISR 队列中。
但是我们主分片数据最多,为什么要把后面的数据干掉呢,这样不是会丢失消息吗?

这样其实是保证了数据的一致性,也就是保证分区和备份节点的都是同样的进度。

数据不丢失问题是由Producer来保证的,也就是有重试机制,如果没有发送成功的话,就会从新发送,但是消费者一侧一定要做幂等。

相关推荐
利刃大大1 小时前
【RabbitMQ】Simple模式 && 工作队列 && 发布/订阅模式 && 路由模式 && 通配符模式 && RPC模式 && 发布确认机制
rpc·消息队列·rabbitmq·队列
一条咸鱼_SaltyFish1 小时前
Spring Cloud Gateway鉴权空指针惊魂:HandlerMethod为null的深度排查
java·开发语言·人工智能·微服务·云原生·架构
无心水2 小时前
【分布式利器:腾讯TSF】10、TSF故障排查与架构评审实战:Java架构师从救火到防火的生产哲学
java·人工智能·分布式·架构·限流·分布式利器·腾讯tsf
ITFLY811 小时前
架构很简单:系统拆分与组合
架构
踏浪无痕12 小时前
AI 时代架构师如何有效成长?
人工智能·后端·架构
anyup13 小时前
2026第一站:分享我在高德大赛现场学到的技术、产品与心得
前端·架构·harmonyos
桌面运维家14 小时前
vDisk配置漂移怎么办?VOI/IDV架构故障快速修复
网络·架构
刘立军15 小时前
如何选择FAISS的索引类型
人工智能·算法·架构
小当家.10515 小时前
深入理解JVM:架构、原理与调优实战
java·jvm·架构
刀法如飞15 小时前
一款开箱即用的Spring Boot 4 DDD工程脚手架
java·后端·架构