消息队列-kafka-服务端处理架构(架构,Topic文件结构,服务端数据的一致性)

服务端处理架构

资料来源于网络

网络线程池:

接受请求,num.network.threads,默认为 3,专门处理客户的发送的请求。

IO 线程池:

num.io.threads,默认为 8,专门处理业务请求。也就是它不负责发送响应,发送响应还是由网络线程池处理。

当遇到性能瓶颈的时候可以适当的调整这两个参数

服务端消息存储文件布局

1 Topic 文件结构

Segment 文件结构

命名规则:一个 segment 的名称其实是当前 segment 第一条消息的偏移量,也就是说一个segement如果写不下了就会生成新的segment。
查找机制

  • 将所有的 segment 文件名进行生序排列然后找到偏移量最后落在哪个 segment 对象上(采用二分,因为文件名是有序的)。
  • 继续从这个 segment 里面的 .index 文件找到消息的物理偏移量,也就是对应图中的.index偏移量,最后拿着物理偏移量去 .log 文件找到最终的实体消息,非常的迅速。
    删除机制
    按照时间过期多少删(默认7天)、按照大小来删

服务端数据的一致性

其实也就是分区和副本之前的一致性。比如说我们P0有9条消息,因为每个节点同步数据(网络,IO等原因)所以导致R0 和 R3 之间的数据并不一致。

HW:高水位,消费者消费最高的位置,其实也就是木桶原理,所以只能到下面图中的第四条消息。

LEO:log写文件的最后一个位置。

ISR:也就是一个分区和备份节点的队列。比如P0,R0,R3.

如果我们的备份节点挂掉了:

1 首先它会从ISR中剔除,当恢复正常的时候,会向主分片获取 HW 高水位线,与自己的 LEO 比对,如果自己的 LEO 超过 HW 则干掉超过的部分,小于的话就从主分片复制数据过来。

2 复制的时候,如果复制之后的 LEO 与 HW 持平的话,那么就会重新加入到 ISR 同步队列中

如果我们的主分区挂掉了:

1 从ISR中剔除,选择数据最多的数据为主分片。

2 活过来的时候,发现已经有顶替的 leader 角色(主分片)了,那么就跟随,也就是向 leader 获取 HW 高水位线,与自己的 LEO 比对,大于 LEO 则删除,小于 LEO 则从 leader 这边复制数据过去。

3 复制数据的进度如果赶上了主分片的 HW 的话,那么就继续加入到 ISR 队列中。
但是我们主分片数据最多,为什么要把后面的数据干掉呢,这样不是会丢失消息吗?

这样其实是保证了数据的一致性,也就是保证分区和备份节点的都是同样的进度。

数据不丢失问题是由Producer来保证的,也就是有重试机制,如果没有发送成功的话,就会从新发送,但是消费者一侧一定要做幂等。

相关推荐
拾忆,想起11 分钟前
Dubbo序列化方式全解析:从原理到实战的性能优化指南
服务器·网络·微服务·性能优化·架构·dubbo
7***n7523 分钟前
后端在微服务中的Traefik
微服务·云原生·架构
上海云盾-小余33 分钟前
警惕 “伪装型” CC 攻击!通过日志分析识别异常请求,让恶意访问无所遁形
人工智能·安全·架构
j***121543 分钟前
计算机体系结构期末复习3:GPU架构及控制流问题
java·开发语言·架构
b***67641 小时前
深入解析HDFS:定义、架构、原理、应用场景及常用命令
hadoop·hdfs·架构
稚辉君.MCA_P8_Java1 小时前
Gemini永久会员 哈希表(Hash Table)高效的数据结构
java·数据结构·后端·算法·架构
y***61311 小时前
【Linux系统】计算机世界的基石:冯诺依曼架构与操作系统设计
架构
阿萨德528号2 小时前
Kafka定理剖析:分区数要大于消费者数
分布式·kafka
七夜zippoe2 小时前
昇腾AI计算架构的基石 - 深度剖析CANN与Ascend C
架构·昇腾·cann·ascend c·pow
小毅&Nora2 小时前
【后端】蓝绿发布全链路改造详解:从配置到生产环境的完整实践
架构·持续部署