pytorch(六、七)多维特征数据的输入、加载数据集的类

文章目录

多维特征数据的输入

对于一个多维数据,其行表示一个样本,列表示样本的特征

对于多维特征的运算,实质上可以当做特征的映射

代码

python 复制代码
import  torch
import  torch.nn.functional as F
import  numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets

xy=np.loadtxt('./data/Diabetes_class.csv.gz',delimiter=',',dtype=np.float32)#加载训练集合
x_data = torch.from_numpy(xy[:,:-1])#取前八列
y_data = torch.from_numpy(xy[:,[-1]])#取最后一列

test =np.loadtxt('./data/test_class.csv.gz',delimiter=',',dtype=np.float32)#加载测试集合,这里我用数据集的最后一个样本做测试,训练集中没有最后一个样本
test_x = torch.from_numpy(test)

class Model(torch.nn.Module):
    def __init__(self):#构造函数
        super(Model,self).__init__()
        self.linear1 = torch.nn.Linear(8,6)#8维到6维
        self.linear2 = torch.nn.Linear(6, 4)#6维到4维
        self.linear3 = torch.nn.Linear(4, 1)#4维到1维
        self.sigmoid = torch.nn.Sigmoid()#因为他里边也没有权重需要更新,所以要一个就行了,单纯的算个数


    def forward(self, x):#构建一个计算图,就像上面图片画的那样
        x = self.sigmoid(self.linear1(x))
        x = self.sigmoid(self.linear2(x))#将上面一行的输出作为输入
        x = self.sigmoid(self.linear3(x))
        return  x

model = Model()#实例化模型

criterion = torch.nn.BCELoss(size_average=False)
#model.parameters()会扫描module中的所有成员,如果成员中有相应权重,那么都会将结果加到要训练的参数集合上
optimizer = torch.optim.SGD(model.parameters(),lr=0.1)#lr为学习率,因为0.01太小了,我改成了0.1

for epoch in range(1000):
    #Forward
    y_pred = model(x_data)
    loss = criterion(y_pred,y_data)
    print(epoch,loss.item())
    #Backward
    optimizer.zero_grad()
    loss.backward()
    #update
    optimizer.step()

y_pred = model(x_data)

print(y_pred.detach().numpy())

y_pred2 = model(test_x)
print(y_pred2.data.item())

加载数据集

概念

python 复制代码
# Training cycle
for epoch in range(training_epochs):
	# Loop over all batches
	for i in range(total_batch)

epoch:表示训练的周期,表示所有的样本都经过前向传播和后向传播才叫一个训练周期

batch-size:每一次训练的时候所需要的样本数量,这个训练包括了前向传播和后向传播

iterations:内层循环一共执行了多少次,= 样本数量 ÷ batch-size

概念

相关推荐
szxinmai主板定制专家2 小时前
【NI测试方案】基于ARM+FPGA的整车仿真与电池标定
arm开发·人工智能·yolo·fpga开发
ygyqinghuan3 小时前
读懂目标检测
人工智能·目标检测·目标跟踪
华东数交3 小时前
企业与国有数据资产:入表全流程管理及资产化闭环理论解析
大数据·人工智能
newxtc5 小时前
【昆明市不动产登记中心-注册安全分析报告】
人工智能·安全
techdashen5 小时前
圆桌讨论:Coding Agent or AI IDE 的现状和未来发展
ide·人工智能
CV实验室6 小时前
TIP 2025 | 哈工大&哈佛等提出 TripleMixer:攻克雨雪雾干扰的3D点云去噪网络!
人工智能·计算机视觉·3d·论文
余俊晖7 小时前
一套针对金融领域多模态问答的自适应多层级RAG框架-VeritasFi
人工智能·金融·rag
码农阿树7 小时前
视频解析转换耗时—OpenCV优化摸索路
人工智能·opencv·音视频
伏小白白白8 小时前
【论文精度-2】求解车辆路径问题的神经组合优化算法:综合展望(Yubin Xiao,2025)
人工智能·算法·机器学习
应用市场8 小时前
OpenCV编程入门:从零开始的计算机视觉之旅
人工智能·opencv·计算机视觉