pytorch(六、七)多维特征数据的输入、加载数据集的类

文章目录

多维特征数据的输入

对于一个多维数据,其行表示一个样本,列表示样本的特征

对于多维特征的运算,实质上可以当做特征的映射

代码

python 复制代码
import  torch
import  torch.nn.functional as F
import  numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets

xy=np.loadtxt('./data/Diabetes_class.csv.gz',delimiter=',',dtype=np.float32)#加载训练集合
x_data = torch.from_numpy(xy[:,:-1])#取前八列
y_data = torch.from_numpy(xy[:,[-1]])#取最后一列

test =np.loadtxt('./data/test_class.csv.gz',delimiter=',',dtype=np.float32)#加载测试集合,这里我用数据集的最后一个样本做测试,训练集中没有最后一个样本
test_x = torch.from_numpy(test)

class Model(torch.nn.Module):
    def __init__(self):#构造函数
        super(Model,self).__init__()
        self.linear1 = torch.nn.Linear(8,6)#8维到6维
        self.linear2 = torch.nn.Linear(6, 4)#6维到4维
        self.linear3 = torch.nn.Linear(4, 1)#4维到1维
        self.sigmoid = torch.nn.Sigmoid()#因为他里边也没有权重需要更新,所以要一个就行了,单纯的算个数


    def forward(self, x):#构建一个计算图,就像上面图片画的那样
        x = self.sigmoid(self.linear1(x))
        x = self.sigmoid(self.linear2(x))#将上面一行的输出作为输入
        x = self.sigmoid(self.linear3(x))
        return  x

model = Model()#实例化模型

criterion = torch.nn.BCELoss(size_average=False)
#model.parameters()会扫描module中的所有成员,如果成员中有相应权重,那么都会将结果加到要训练的参数集合上
optimizer = torch.optim.SGD(model.parameters(),lr=0.1)#lr为学习率,因为0.01太小了,我改成了0.1

for epoch in range(1000):
    #Forward
    y_pred = model(x_data)
    loss = criterion(y_pred,y_data)
    print(epoch,loss.item())
    #Backward
    optimizer.zero_grad()
    loss.backward()
    #update
    optimizer.step()

y_pred = model(x_data)

print(y_pred.detach().numpy())

y_pred2 = model(test_x)
print(y_pred2.data.item())

加载数据集

概念

python 复制代码
# Training cycle
for epoch in range(training_epochs):
	# Loop over all batches
	for i in range(total_batch)

epoch:表示训练的周期,表示所有的样本都经过前向传播和后向传播才叫一个训练周期

batch-size:每一次训练的时候所需要的样本数量,这个训练包括了前向传播和后向传播

iterations:内层循环一共执行了多少次,= 样本数量 ÷ batch-size

概念

相关推荐
byzh_rc10 小时前
[机器学习-从入门到入土] 拓展-最小二乘法
人工智能·机器学习·最小二乘法
阿里巴啦10 小时前
React+go实现AI 图像生成落地实践:文生图、图生图的工程项目
人工智能·react.js·ai作画·七牛云·ai生图·ai图生图
Codebee10 小时前
AI 时代的人机协同:在智慧与执行之间寻找平衡
人工智能
love530love10 小时前
EPGF 新手教程 12在 PyCharm(中文版 GUI)中创建 Poetry 项目环境,并把 Poetry 做成“项目自包含”(工具本地化为必做环节)
开发语言·ide·人工智能·windows·python·pycharm·epgf
XC1314890826710 小时前
ToB获客破局:精准数据+AI外呼,重构效率新模式
大数据·人工智能·重构
应用市场10 小时前
图片格式完全指南——从JPEG到AVIF的技术原理与选型
网络·人工智能·安全·汽车
2501_9418091410 小时前
在圣保罗智能物流场景中构建快递实时调度与高并发任务管理平台的工程设计实践经验分享
大数据·人工智能
hg011811 小时前
湖南电动汽车年出口额破百亿
人工智能
高洁0111 小时前
10分钟了解向量数据库(3
人工智能·深度学习·机器学习·transformer·知识图谱
IvorySQL11 小时前
让源码安装不再困难:IvorySQL 一键安装脚本的实现细节解析
数据库·人工智能·postgresql·开源