RMSNorm 类中引入一些参数

RMSNorm 类中,引入可学习的参数,以增强模型的表达能力和适应性。以下是一些常见的方法:

  1. 可学习的缩放参数(Scale)

    除了 self.weight,可以为每个维度引入一个可学习的缩放参数。这可以通过创建一个与输入维度相同的权重矩阵来实现,而不是一个向量。这样,每个特征维度都会有一个独立的缩放因子。

    python 复制代码
    class RMSNorm(torch.nn.Module):
        def __init__(self, dim: int, eps: float = 1e-6):
            super().__init__()
            self.eps = eps
            self.weight = nn.Parameter(torch.ones((dim, 1)))  # 权重矩阵
    
        def forward(self, x):
            normed = self._norm(x)
            return normed * self.weight
  2. 可学习的偏移参数(Shift)

    除了缩放,还可以为每个维度引入一个可学习的偏移参数。这可以通过添加一个与 self.weight 类似的权重矩阵来实现,但用于添加到归一化后的输出上。

    python 复制代码
    class RMSNorm(torch.nn.Module):
        def __init__(self, dim: int, eps: float = 1e-6):
            super().__init__()
            self.eps = eps
            self.scale = nn.Parameter(torch.ones((dim, 1)))  # 缩放权重矩阵
            self.shift = nn.Parameter(torch.zeros((dim, 1)))  # 偏移权重矩阵
    
        def forward(self, x):
            normed = self._norm(x)
            return normed * self.scale + self.shift
  3. 可学习的归一化参数(Custom Normalization)

    可以设计一个自定义的归一化函数,其中包含可学习的参数。例如,可以学习一个参数来控制归一化过程中的动态范围。

python 复制代码
import torch
import torch.nn as nn

class CustomNorm(nn.Module):
    def __init__(self, num_features, eps=1e-5):
        super(CustomNorm, self).__init__()
        # 可学习的缩放参数 gamma,初始化为1
        self.gamma = nn.Parameter(torch.ones(num_features))
        # 可选的可学习偏移参数 beta,初始化为0
        self.beta = nn.Parameter(torch.zeros(num_features))
        self.eps = eps

    def forward(self, x):
        # 计算均值和方差
        mean = x.mean(1, keepdim=True)
        var = x.var(1, keepdim=True)

        # 归一化
        x_norm = (x - mean) / torch.sqrt(var + self.eps)

        # 应用可学习的缩放和偏移
        x_out = self.gamma * x_norm + self.beta

        return x_out

# 示例使用
num_features = 10  # 假设输入特征的维度为10
custom_norm_layer = CustomNorm(num_features)

# 假设有一个随机生成的输入张量
input_tensor = torch.randn(5, num_features)  # 5个样本,每个样本有10个特征

# 前向传播
output_tensor = custom_norm_layer(input_tensor)
print(output_tensor)
  1. 可学习的激活函数参数

    在归一化之后,可以引入一个可学习的激活函数,其参数也可以是可训练的。这可以通过使用 nn.functional 中的激活函数,并将可学习参数作为激活函数的输入。

    python 复制代码
    class RMSNorm(torch.nn.Module):
        def __init__(self, dim: int, eps: float = 1e-6):
            super().__init__()
            self.eps = eps
            self.activation_param = nn.Parameter(torch.ones(1))  # 可学习的激活函数参数
    
        def forward(self, x):
            normed = self._norm(x)
            return torch.tanh(self.activation_param * normed)  # 使用tanh激活函数
相关推荐
禺垣8 分钟前
知识图谱技术概述
大数据·人工智能·深度学习·知识图谱
七七&55617 分钟前
java面试-场景题
java·python·面试
我就是全世界17 分钟前
2025主流智能体Agent终极指南:Manus、OpenManus、MetaGPT、AutoGPT与CrewAI深度横评
人工智能·python·机器学习
king of code porter27 分钟前
深度学习之模型压缩三驾马车:基于ResNet18的模型剪枝实战(1)
人工智能·深度学习·剪枝
waterHBO38 分钟前
python 爬虫工具 mitmproxy, 几问几答,记录一下
开发语言·爬虫·python
pianmian141 分钟前
arcpy与扩展模块
python
Blossom.1181 小时前
使用Python和OpenCV实现图像识别与目标检测
人工智能·python·神经网络·opencv·安全·目标检测·机器学习
chicpopoo1 小时前
Python打卡DAY46
开发语言·python
灏瀚星空1 小时前
Python数学可视化:3D参数曲面与隐式曲面绘制技术
开发语言·python·3d
晨尘光1 小时前
在Windows下编译出llama_cpp_python的DLL后,在虚拟环境中使用方法
python·llama