RMSNorm 类中引入一些参数

RMSNorm 类中,引入可学习的参数,以增强模型的表达能力和适应性。以下是一些常见的方法:

  1. 可学习的缩放参数(Scale)

    除了 self.weight,可以为每个维度引入一个可学习的缩放参数。这可以通过创建一个与输入维度相同的权重矩阵来实现,而不是一个向量。这样,每个特征维度都会有一个独立的缩放因子。

    python 复制代码
    class RMSNorm(torch.nn.Module):
        def __init__(self, dim: int, eps: float = 1e-6):
            super().__init__()
            self.eps = eps
            self.weight = nn.Parameter(torch.ones((dim, 1)))  # 权重矩阵
    
        def forward(self, x):
            normed = self._norm(x)
            return normed * self.weight
  2. 可学习的偏移参数(Shift)

    除了缩放,还可以为每个维度引入一个可学习的偏移参数。这可以通过添加一个与 self.weight 类似的权重矩阵来实现,但用于添加到归一化后的输出上。

    python 复制代码
    class RMSNorm(torch.nn.Module):
        def __init__(self, dim: int, eps: float = 1e-6):
            super().__init__()
            self.eps = eps
            self.scale = nn.Parameter(torch.ones((dim, 1)))  # 缩放权重矩阵
            self.shift = nn.Parameter(torch.zeros((dim, 1)))  # 偏移权重矩阵
    
        def forward(self, x):
            normed = self._norm(x)
            return normed * self.scale + self.shift
  3. 可学习的归一化参数(Custom Normalization)

    可以设计一个自定义的归一化函数,其中包含可学习的参数。例如,可以学习一个参数来控制归一化过程中的动态范围。

python 复制代码
import torch
import torch.nn as nn

class CustomNorm(nn.Module):
    def __init__(self, num_features, eps=1e-5):
        super(CustomNorm, self).__init__()
        # 可学习的缩放参数 gamma,初始化为1
        self.gamma = nn.Parameter(torch.ones(num_features))
        # 可选的可学习偏移参数 beta,初始化为0
        self.beta = nn.Parameter(torch.zeros(num_features))
        self.eps = eps

    def forward(self, x):
        # 计算均值和方差
        mean = x.mean(1, keepdim=True)
        var = x.var(1, keepdim=True)

        # 归一化
        x_norm = (x - mean) / torch.sqrt(var + self.eps)

        # 应用可学习的缩放和偏移
        x_out = self.gamma * x_norm + self.beta

        return x_out

# 示例使用
num_features = 10  # 假设输入特征的维度为10
custom_norm_layer = CustomNorm(num_features)

# 假设有一个随机生成的输入张量
input_tensor = torch.randn(5, num_features)  # 5个样本,每个样本有10个特征

# 前向传播
output_tensor = custom_norm_layer(input_tensor)
print(output_tensor)
  1. 可学习的激活函数参数

    在归一化之后,可以引入一个可学习的激活函数,其参数也可以是可训练的。这可以通过使用 nn.functional 中的激活函数,并将可学习参数作为激活函数的输入。

    python 复制代码
    class RMSNorm(torch.nn.Module):
        def __init__(self, dim: int, eps: float = 1e-6):
            super().__init__()
            self.eps = eps
            self.activation_param = nn.Parameter(torch.ones(1))  # 可学习的激活函数参数
    
        def forward(self, x):
            normed = self._norm(x)
            return torch.tanh(self.activation_param * normed)  # 使用tanh激活函数
相关推荐
Deng9452013145 分钟前
基于Python的旅游数据可视化应用
python·numpy·pandas·旅游·数据可视化技术
2401_878624798 分钟前
pytorch 自动微分
人工智能·pytorch·python·机器学习
胖达不服输11 分钟前
「日拱一码」021 机器学习——特征工程
人工智能·python·机器学习·特征工程
小哥谈1 小时前
论文解析篇 | YOLOv12:以注意力机制为核心的实时目标检测算法
人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
screenCui1 小时前
macOS运行python程序遇libiomp5.dylib库冲突错误解决方案
开发语言·python·macos
水龙吟啸1 小时前
从零开始搭建深度学习大厦系列-2.卷积神经网络基础(5-9)
人工智能·pytorch·深度学习·cnn·mxnet
小眼睛羊羊1 小时前
pyinstaller打包paddleocr
python
java1234_小锋1 小时前
基于Python的旅游推荐协同过滤算法系统(去哪儿网数据分析及可视化(Django+echarts))
python·数据分析·旅游
蓝婷儿1 小时前
Python 机器学习核心入门与实战进阶 Day 4 - 支持向量机(SVM)原理与分类实战
python·机器学习·支持向量机
%d%d22 小时前
python 在运行时没有加载修改后的版本
java·服务器·python