RMSNorm 类中引入一些参数

RMSNorm 类中,引入可学习的参数,以增强模型的表达能力和适应性。以下是一些常见的方法:

  1. 可学习的缩放参数(Scale)

    除了 self.weight,可以为每个维度引入一个可学习的缩放参数。这可以通过创建一个与输入维度相同的权重矩阵来实现,而不是一个向量。这样,每个特征维度都会有一个独立的缩放因子。

    python 复制代码
    class RMSNorm(torch.nn.Module):
        def __init__(self, dim: int, eps: float = 1e-6):
            super().__init__()
            self.eps = eps
            self.weight = nn.Parameter(torch.ones((dim, 1)))  # 权重矩阵
    
        def forward(self, x):
            normed = self._norm(x)
            return normed * self.weight
  2. 可学习的偏移参数(Shift)

    除了缩放,还可以为每个维度引入一个可学习的偏移参数。这可以通过添加一个与 self.weight 类似的权重矩阵来实现,但用于添加到归一化后的输出上。

    python 复制代码
    class RMSNorm(torch.nn.Module):
        def __init__(self, dim: int, eps: float = 1e-6):
            super().__init__()
            self.eps = eps
            self.scale = nn.Parameter(torch.ones((dim, 1)))  # 缩放权重矩阵
            self.shift = nn.Parameter(torch.zeros((dim, 1)))  # 偏移权重矩阵
    
        def forward(self, x):
            normed = self._norm(x)
            return normed * self.scale + self.shift
  3. 可学习的归一化参数(Custom Normalization)

    可以设计一个自定义的归一化函数,其中包含可学习的参数。例如,可以学习一个参数来控制归一化过程中的动态范围。

python 复制代码
import torch
import torch.nn as nn

class CustomNorm(nn.Module):
    def __init__(self, num_features, eps=1e-5):
        super(CustomNorm, self).__init__()
        # 可学习的缩放参数 gamma,初始化为1
        self.gamma = nn.Parameter(torch.ones(num_features))
        # 可选的可学习偏移参数 beta,初始化为0
        self.beta = nn.Parameter(torch.zeros(num_features))
        self.eps = eps

    def forward(self, x):
        # 计算均值和方差
        mean = x.mean(1, keepdim=True)
        var = x.var(1, keepdim=True)

        # 归一化
        x_norm = (x - mean) / torch.sqrt(var + self.eps)

        # 应用可学习的缩放和偏移
        x_out = self.gamma * x_norm + self.beta

        return x_out

# 示例使用
num_features = 10  # 假设输入特征的维度为10
custom_norm_layer = CustomNorm(num_features)

# 假设有一个随机生成的输入张量
input_tensor = torch.randn(5, num_features)  # 5个样本,每个样本有10个特征

# 前向传播
output_tensor = custom_norm_layer(input_tensor)
print(output_tensor)
  1. 可学习的激活函数参数

    在归一化之后,可以引入一个可学习的激活函数,其参数也可以是可训练的。这可以通过使用 nn.functional 中的激活函数,并将可学习参数作为激活函数的输入。

    python 复制代码
    class RMSNorm(torch.nn.Module):
        def __init__(self, dim: int, eps: float = 1e-6):
            super().__init__()
            self.eps = eps
            self.activation_param = nn.Parameter(torch.ones(1))  # 可学习的激活函数参数
    
        def forward(self, x):
            normed = self._norm(x)
            return torch.tanh(self.activation_param * normed)  # 使用tanh激活函数
相关推荐
鸡鸭扣1 小时前
Docker:3、在VSCode上安装并运行python程序或JavaScript程序
运维·vscode·python·docker·容器·js
paterWang1 小时前
基于 Python 和 OpenCV 的酒店客房入侵检测系统设计与实现
开发语言·python·opencv
东方佑1 小时前
使用Python和OpenCV实现图像像素压缩与解压
开发语言·python·opencv
神秘_博士2 小时前
自制AirTag,支持安卓/鸿蒙/PC/Home Assistant,无需拥有iPhone
arm开发·python·物联网·flutter·docker·gitee
Moutai码农3 小时前
机器学习-生命周期
人工智能·python·机器学习·数据挖掘
Jackilina_Stone4 小时前
【DL】浅谈深度学习中的知识蒸馏 | 输出层知识蒸馏
人工智能·深度学习·机器学习·蒸馏
小白教程4 小时前
python学习笔记,python处理 Excel、Word、PPT 以及邮件自动化办公
python·python学习·python安装
武陵悭臾5 小时前
网络爬虫学习:借助DeepSeek完善爬虫软件,实现模拟鼠标右键点击,将链接另存为本地文件
python·selenium·网络爬虫·pyautogui·deepseek·鼠标右键模拟·保存链接为htm
代码猪猪傻瓜coding5 小时前
关于 形状信息提取的说明
人工智能·python·深度学习
Kai HVZ6 小时前
《深度学习》——自然语言处理(NLP)
人工智能·深度学习·自然语言处理