KL divergence(KL 散度)详解

本文用一种浅显易懂的方式说明KL散度。
参考资料

KL散度本质上是比较两个分布的相似程度。

现在给出2个简单的离散分布,称为分布1和分布2.

分布1有3个样本,

其中A的概率为50%, B的概率为40%,C的概率为10%

分布2也有3个样本:

其中A的概率为50%,B的概率为10%,C的概率为40%。

现在想比较分布1和分布2的相似程度。

直观看上去分布1和分布2中样本A的概率是一样的,仅仅B和C的概率换了一下。

分布应该是相似的,但是如何量化来看呢。

可以这样做,用分布1的各个样本的概率和分布2样本概率做比值,相加再求平均。

现假设分布1的概率分布为P,分布2的概率分布为Q,

那么P(A) = 0.5, P(B)=0.4, P( C) = 0.1

Q(A) = 0.5, Q(B) = 0.1, Q( C) = 0.4,

各样本概率做比值之后为:

P(A)/Q(A) + P(B)/Q(B) + P( C)/Q( C) = 1+4+1/4

再对3个样本取平均: (1+4+1/4) / 3 = 1.75

这就是我们想要的分布1和分布2的相似度。

不过有一个问题,

可以看到P(B)和Q(B), P( C)和Q( C)仅仅概率做了交换,它们的相似度大小应该是一样的(仅仅方向不一样),

也就是说P(B)/Q(B), P( C)/Q( C)的绝对值应该是一样的,符号不一样。

但是现在,哪个分子大哪个结果就大,这是不应该的,

想要这样一个函数来解决这个问题,

f(4) = y

f(1/4) = -y,

这里的4为P(B)/Q(B), 1/4为P( C)/Q( C),

经过f(x)后得到的应该是同样的相似度大小,只是方向不一样,一个是变大的方向,一个是变小的方向,用负号表示方向的不同。

那么什么样的函数能满足f(x)呢,

可以取几个值画一下,你会发现,这个f(x)就是log(x)。

那么现在把刚才的相似度修改一下,

把简单的P(x)/Q(x)换成log(P(x) / Q(x)).

于是变为: ∑ 1 n l o g P ( x ) Q ( x ) / n \sum_{1}^{n} log\frac{P(x)}{Q(x)} / n 1∑nlogQ(x)P(x)/n

对样本取平均值表示每个样本的weight都是1/n,

不要取这么平均,把weight改为P(x),

那么就得到 ∑ 1 n P ( x ) l o g P ( x ) Q ( x ) \sum_{1}^{n} P(x) log\frac{P(x)}{Q(x)} 1∑nP(x)logQ(x)P(x)

这就是我们熟悉的KL散度,它比较的是分布P和分布Q的相似度。

"||"右边的Q表示是reference分布。

K L ( P ∣ ∣ Q ) = ∑ 1 n P ( x ) l o g P ( x ) Q ( x ) KL(P||Q) = \sum_{1}^{n} P(x) log\frac{P(x)}{Q(x)} KL(P∣∣Q)=1∑nP(x)logQ(x)P(x)

相关推荐
云空29 分钟前
《探索电脑麦克风声音采集多窗口实时可视化技术》
人工智能·python·算法
麦兜*33 分钟前
【Spring Boot】Spring Boot 4.0 的颠覆性AI特性全景解析,结合智能编码实战案例、底层架构革新及Prompt工程手册
java·人工智能·spring boot·后端·spring·架构
张较瘦_36 分钟前
[论文阅读] 人工智能 | 5C提示词框架的研究
论文阅读·人工智能
超龄超能程序猿1 小时前
使用 Python 对本地图片进行图像分类
开发语言·人工智能·python·机器学习·分类·数据挖掘·scipy
大千AI助手1 小时前
RLHF:人类反馈强化学习 | 对齐AI与人类价值观的核心引擎
人工智能·深度学习·算法·机器学习·强化学习·rlhf·人类反馈强化学习
我爱一条柴ya1 小时前
【AI大模型】RAG系统组件:向量数据库(ChromaDB)
数据库·人工智能·pytorch·python·ai·ai编程
MARS_AI_1 小时前
云蝠智能VoiceAgent重构企业电话客服体系
人工智能·自然语言处理·人机交互·交互·信息与通信
在猴站学算法5 小时前
机器学习(西瓜书) 第二章 模型评估与选择
人工智能·机器学习
科技宅说6 小时前
36氪专访丨乐橙CEO谢运:AI科技下的业务创新与长期主义下的品牌坚守
人工智能·科技
学术小八7 小时前
2025年人工智能、虚拟现实与交互设计国际学术会议
人工智能·交互·vr