[Redis]——缓存击穿和缓存穿透及解决方案(图解+代码+解释)

目录

一、缓存击穿(热点Key问题)

[1.1 问题描述](#1.1 问题描述)

[1.2 解决方案及逻辑图](#1.2 解决方案及逻辑图)

[1.2.1 互斥锁](#1.2.1 互斥锁)

[1.2.2 逻辑过期](#1.2.2 逻辑过期)

二、缓存穿透

[2.1 问题描述](#2.1 问题描述)

[2.2 解决方案逻辑图](#2.2 解决方案逻辑图)

[2.2.1 缓存空对象](#2.2.1 缓存空对象)

[2.2.2 布隆过滤器](#2.2.2 布隆过滤器)


一、缓存击穿(热点Key问题)

  • 个人理解:

这里先提前说一下,热点Key问题不考虑缓存穿透了,也就是不考虑命中空缓存了,因为这种一般用于活动秒杀,这些热点Key都是提前存储好的(貌似是这样的,我也不太确定~~)

1.1 问题描述

经常被查询的一个Key突然失效或者宕机了,导致重建缓存,由于是热点Key,所以有不断的线程来查和重建缓存,导致大量数据到达数据库,这种我们称为缓存击穿。

1.2 解决方案及逻辑图

1.2.1 互斥锁

解释:

如果未命中缓存,先获取互斥锁,获取锁之后要再次检查缓存,如果还是未命中进行缓存重建,这样当其他线程来的时候就会获取锁失败,这时我们让这个线程休眠一会,重新查询缓存,如果命中就返回嘛,如果没命中再次尝试获取锁,假设这次获取锁成功了,还是再次检查缓存,如果未命中重建缓存。

优点:可保证数据高一致性

缺点:性能低,可能发生死锁

🦈->逻辑图

🦈->上代码

java 复制代码
   public Shop solveCacheMutex(Long id){
        // 查询redis中有无数据
        String key = "cache:shop:" + id;
        String shopCache = stringRedisTemplate.opsForValue().get(key);
        if(StrUtil.isNotBlank(shopCache)){
            // 命中缓存
            return JSONUtil.toBean(shopCache, Shop.class);
        }
        // 判断缓存穿透问题 - shopCaache如果为"" 命中空缓存 如果为null 需要查询数据库
        if(shopCache != null){
            // 命中空缓存
            return null;
        }
        // 2.1未命中缓存 尝试获取互斥锁
        String lockKey = "lock:shop:" + id;
        Shop shop = null;
        try {
            boolean lock = tryLock(lockKey);
            if(!lock){
                // 获取锁失败
                Thread.sleep(50);
                return solveCacheMutex(id);
            }
            // 获取锁成功
            // 再次检查Redis是否有缓存
            shopCache = stringRedisTemplate.opsForValue().get(key);
            if(StrUtil.isNotBlank(shopCache)){
                return JSONUtil.toBean(shopCache, Shop.class);
            }
            // 查询数据库
            shop = getById(id);
            // 店铺不存在
            if(shop == null){
                // 将空值写入Redis
                stringRedisTemplate.opsForValue().set(key, "", RedisConstants.CACHE_NULL_TTL, TimeUnit.MINUTES);
                return null;
            }
            // 存储Redis
            stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(shop), RedisConstants.CACHE_SHOP_TTL, TimeUnit.MINUTES);
        } catch (InterruptedException e) {
            throw new RuntimeException(e);
        } finally {
            // 释放互斥锁
            unLock(lockKey);
        }
        return shop;
    }
1.2.2 逻辑过期

解释:

为缓存key设置逻辑过期时间(就是加一个字段),假设线程1查询缓存,未命中直接返回,命中判断是否过期发现,没过期也好说直接返回数据就行,已过期,就会尝试获取锁,然后此刻开启新的线程进行缓存重建,线程1返回旧数据,其他线程获取锁失败都返回旧数据。

优点:性能高

缺点:数据可能不一致,实现复杂

🐟**->逻辑图**

🐟**->上代码**

java 复制代码
    private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10);
    public Shop solveCacheLogicalExpire(Long id){
        // 查询redis中有无数据
        String key = "cache:shop:" + id;
        String shopCache = stringRedisTemplate.opsForValue().get(key);
        if(StrUtil.isBlank(shopCache)){
            // 未命中返回null
            return null;
        }
        // 命中缓存 检查是否过期
        // 未过期 直接返回 注意这里类型转换
        RedisData redisData = JSONUtil.toBean(shopCache, RedisData.class);
        JSONObject jsonObject = (JSONObject) redisData.getData(); // 此处是将Bean对象转ObjectJson
        Shop shop = JSONUtil.toBean(jsonObject, Shop.class);
        LocalDateTime expireTime = redisData.getExpireTime();
        if(expireTime.isAfter(LocalDateTime.now())){
            return shop;
        }
        // 过期
        // 获取锁
        String lockKey = "lock:shop:" + id;
        boolean lock = tryLock(lockKey);
        if(lock){
            // 成功
            // 再次检查Redis缓存是否逻辑过期
            if(expireTime.isAfter(LocalDateTime.now())){
                // 没过期
                return shop;
            }
            // 再次检查过期
            // 开启新线程
            CACHE_REBUILD_EXECUTOR.submit(()->{
                try {
                    // 重建缓存
                    this.saveShop2Redis(id, 20L);
                } catch (Exception e) {
                    throw new RuntimeException(e);
                } finally {
                    unLock(lockKey);
                }
            });

        }
        // 返回数据
        return shop;
    }

    public void saveShop2Redis(Long id, Long expireSeconds){
        RedisData redisData = new RedisData();
        Shop shop = getById(id);
        redisData.setData(shop);
        redisData.setExpireTime(LocalDateTime.now().plusSeconds(expireSeconds));
        stringRedisTemplate.opsForValue().set(RedisConstants.CACHE_SHOP_KEY + id, JSONUtil.toJsonStr(redisData));
    }

获取锁和释放锁逻辑

java 复制代码
    private boolean tryLock(String key){
        Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);
        return BooleanUtil.isTrue(flag);
    }
    // 释放锁
    private void unLock(String key){
        stringRedisTemplate.delete(key);
    }

二、缓存穿透

2.1 问题描述

查询的Key压根不存在,所以每次都未命中缓存,直接到数据库,这我们称为缓存穿透。

2.2 解决方案逻辑图

方案① 缓存空对象

方案② 布隆过滤器

2.2.1 缓存空对象

这里原理就不说了,只说下优缺点。然后上代码

  1. 优点:实现简单,维护方便
  2. 缺点:占内存,可能造成短期数据不一致

上代码

java 复制代码
    public Shop solveCacheThrow(Long id){
        // 查询redis中有无数据
        String key = "cache:shop:" + id;
        String shopCache = stringRedisTemplate.opsForValue().get(key);
        if(StrUtil.isNotBlank(shopCache)){
            // 命中缓存
            return JSONUtil.toBean(shopCache, Shop.class);
        }
        // 解决缓存穿透问题 - shopCaache如果为"" 命中空缓存 如果为null 查询数据库
        if(shopCache != null){
            // 命中空缓存
            return null;
        }

        // 查询数据库
        Shop shop = getById(id);
        // 店铺不存在
        if(shop == null){
            // 将空值写入Redis
            stringRedisTemplate.opsForValue().set(key, "", RedisConstants.CACHE_NULL_TTL, TimeUnit.MINUTES);
            return null;
        }

        // 存储Redis
        stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(shop), RedisConstants.CACHE_SHOP_TTL, TimeUnit.MINUTES);
        return shop;
    }
2.2.2 布隆过滤器

布隆过滤器俺不会~~~

我只知道他是根据一个算法算出来数据库有没有存储该key对应数据,但是放行可能也没数据。

相关推荐
万岳科技系统开发24 分钟前
食堂采购系统源码库存扣减算法与并发控制实现详解
java·前端·数据库·算法
冉冰学姐37 分钟前
SSM智慧社区管理系统jby69(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面
数据库·管理系统·智慧社区·ssm 框架
杨超越luckly43 分钟前
HTML应用指南:利用GET请求获取中国500强企业名单,揭秘企业增长、分化与转型的新常态
前端·数据库·html·可视化·中国500强
Elastic 中国社区官方博客1 小时前
Elasticsearch:Workflows 介绍 - 9.3
大数据·数据库·人工智能·elasticsearch·ai·全文检索
仍然.1 小时前
MYSQL--- 聚合查询,分组查询和联合查询
数据库
一 乐1 小时前
校园二手交易|基于springboot + vue校园二手交易系统(源码+数据库+文档)
java·数据库·vue.js·spring boot·后端
啦啦啦_99991 小时前
Redis-0-业务逻辑
数据库·redis·缓存
自不量力的A同学2 小时前
Redisson 4.2.0 发布,官方推荐的 Redis 客户端
数据库·redis·缓存
Exquisite.2 小时前
Mysql
数据库·mysql
fengxin_rou2 小时前
[Redis从零到精通|第四篇]:缓存穿透、雪崩、击穿
java·redis·缓存·mybatis·idea·多线程