代码随想录算法训练营Day38 || leetCode 7509. 斐波那契数 || 70. 爬楼梯 || 746. 使用最小花费爬楼梯

动态规划和我们数电中学习的时序电路类似,某一时刻的状态不仅与当前时刻的输入有关,还与之前的状态有关,所以推导过程中我们需要模拟题目中的情况,来找到每一时刻状态间的关系。
做题思路如下

509. 斐波那契数

此题简单

状态方程为dp[i]=dp[i-1]+dp[2]

初始状态dp[0]=0,dp[1]=1

cpp 复制代码
class Solution {
public:
    int fib(int n) {
        if (n <= 1) return n;
        int dp[2]={0};
        dp[1]=1;
        for (int i = 2; i <= n; i++){
            int tmp = dp[0]+dp[1];
            dp[0]=dp[1];
            dp[1]=tmp;
        }
        return dp[1];
    }
};

70. 爬楼梯

仔细分析一下就会发现,此题本质也是斐波那契数列

cpp 复制代码
class Solution {
public:
    int climbStairs(int n) {
        if (n <= 2) return n;
        int dp[3] = {0};
        dp[1]=1;
        dp[2]=2;
        for (int i = 3; i <= n; i++){
            dp[0] = dp[1]+dp[2];
            dp[1]=dp[2];
            dp[2]=dp[0];
        }
        return dp[2];
    }
};

746. 使用最小花费爬楼梯

首先小于两层的楼梯可以看作是无花费的,于是从第二层楼梯看起

因为求最小花费,且每次都可爬一到两层

所以dp[i]=min (dp[i-1]+cost[i-1],dp[i-2]+cost[i-2])

由此找到关系写代码即可

cpp 复制代码
class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        int n = cost.size();
        vector<int> dp(n+1,0);
        for(int i = 2; i <= n; i++){
            dp[i] = min (dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
        }
        return dp[n];
    }
};
相关推荐
我要学编程(ಥ_ಥ)37 分钟前
一文详解“二叉树中的深搜“在算法中的应用
java·数据结构·算法·leetcode·深度优先
埃菲尔铁塔_CV算法39 分钟前
FTT变换Matlab代码解释及应用场景
算法
许野平1 小时前
Rust: enum 和 i32 的区别和互换
python·算法·rust·enum·i32
chenziang12 小时前
leetcode hot100 合并区间
算法
chenziang12 小时前
leetcode hot100 对称二叉树
算法·leetcode·职场和发展
szuzhan.gy2 小时前
DS查找—二叉树平衡因子
数据结构·c++·算法
一只码代码的章鱼3 小时前
排序算法 (插入,选择,冒泡,希尔,快速,归并,堆排序)
数据结构·算法·排序算法
青い月の魔女3 小时前
数据结构初阶---二叉树
c语言·数据结构·笔记·学习·算法
林的快手4 小时前
209.长度最小的子数组
java·数据结构·数据库·python·算法·leetcode
千天夜4 小时前
多源多点路径规划:基于启发式动态生成树算法的实现
算法·机器学习·动态规划