代码随想录算法训练营Day38 || leetCode 7509. 斐波那契数 || 70. 爬楼梯 || 746. 使用最小花费爬楼梯

动态规划和我们数电中学习的时序电路类似,某一时刻的状态不仅与当前时刻的输入有关,还与之前的状态有关,所以推导过程中我们需要模拟题目中的情况,来找到每一时刻状态间的关系。
做题思路如下

509. 斐波那契数

此题简单

状态方程为dp[i]=dp[i-1]+dp[2]

初始状态dp[0]=0,dp[1]=1

cpp 复制代码
class Solution {
public:
    int fib(int n) {
        if (n <= 1) return n;
        int dp[2]={0};
        dp[1]=1;
        for (int i = 2; i <= n; i++){
            int tmp = dp[0]+dp[1];
            dp[0]=dp[1];
            dp[1]=tmp;
        }
        return dp[1];
    }
};

70. 爬楼梯

仔细分析一下就会发现,此题本质也是斐波那契数列

cpp 复制代码
class Solution {
public:
    int climbStairs(int n) {
        if (n <= 2) return n;
        int dp[3] = {0};
        dp[1]=1;
        dp[2]=2;
        for (int i = 3; i <= n; i++){
            dp[0] = dp[1]+dp[2];
            dp[1]=dp[2];
            dp[2]=dp[0];
        }
        return dp[2];
    }
};

746. 使用最小花费爬楼梯

首先小于两层的楼梯可以看作是无花费的,于是从第二层楼梯看起

因为求最小花费,且每次都可爬一到两层

所以dp[i]=min (dp[i-1]+cost[i-1],dp[i-2]+cost[i-2])

由此找到关系写代码即可

cpp 复制代码
class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        int n = cost.size();
        vector<int> dp(n+1,0);
        for(int i = 2; i <= n; i++){
            dp[i] = min (dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
        }
        return dp[n];
    }
};
相关推荐
plus4s33 分钟前
2月12日(70-72题)
算法
m0_6727033140 分钟前
上机练习第24天
算法
逆境清醒1 小时前
软考高项常见英语词汇(2)
职场和发展·信息系统项目管理师·英语·计算机软考
edisao1 小时前
序幕-内部审计备忘录
java·jvm·算法
shehuiyuelaiyuehao1 小时前
22Java对象的比较
java·python·算法
Dev7z2 小时前
滚压表面强化过程中变形诱导位错演化与梯度晶粒细化机理的数值模拟研究
人工智能·python·算法
吴秋霖3 小时前
apple游客下单逆向分析
python·算法·逆向分析
YunchengLi4 小时前
【计算机图形学中的四元数】2/2 Quaternions for Computer Graphics
人工智能·算法·机器学习
CUC-MenG5 小时前
Codeforces Round 1079 (Div. 2)A,B,C,D,E1,E2,F个人题解
c语言·开发语言·数学·算法
666HZ6665 小时前
数据结构4.0 串
c语言·数据结构·算法