代码随想录算法训练营Day38 || leetCode 7509. 斐波那契数 || 70. 爬楼梯 || 746. 使用最小花费爬楼梯

动态规划和我们数电中学习的时序电路类似,某一时刻的状态不仅与当前时刻的输入有关,还与之前的状态有关,所以推导过程中我们需要模拟题目中的情况,来找到每一时刻状态间的关系。
做题思路如下

509. 斐波那契数

此题简单

状态方程为dp[i]=dp[i-1]+dp[2]

初始状态dp[0]=0,dp[1]=1

cpp 复制代码
class Solution {
public:
    int fib(int n) {
        if (n <= 1) return n;
        int dp[2]={0};
        dp[1]=1;
        for (int i = 2; i <= n; i++){
            int tmp = dp[0]+dp[1];
            dp[0]=dp[1];
            dp[1]=tmp;
        }
        return dp[1];
    }
};

70. 爬楼梯

仔细分析一下就会发现,此题本质也是斐波那契数列

cpp 复制代码
class Solution {
public:
    int climbStairs(int n) {
        if (n <= 2) return n;
        int dp[3] = {0};
        dp[1]=1;
        dp[2]=2;
        for (int i = 3; i <= n; i++){
            dp[0] = dp[1]+dp[2];
            dp[1]=dp[2];
            dp[2]=dp[0];
        }
        return dp[2];
    }
};

746. 使用最小花费爬楼梯

首先小于两层的楼梯可以看作是无花费的,于是从第二层楼梯看起

因为求最小花费,且每次都可爬一到两层

所以dp[i]=min (dp[i-1]+cost[i-1],dp[i-2]+cost[i-2])

由此找到关系写代码即可

cpp 复制代码
class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        int n = cost.size();
        vector<int> dp(n+1,0);
        for(int i = 2; i <= n; i++){
            dp[i] = min (dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
        }
        return dp[n];
    }
};
相关推荐
颜酱5 小时前
图结构完全解析:从基础概念到遍历实现
javascript·后端·算法
m0_736919105 小时前
C++代码风格检查工具
开发语言·c++·算法
yugi9878385 小时前
基于MATLAB强化学习的单智能体与多智能体路径规划算法
算法·matlab
DuHz6 小时前
超宽带脉冲无线电(Ultra Wideband Impulse Radio, UWB)简介
论文阅读·算法·汽车·信息与通信·信号处理
Polaris北极星少女6 小时前
TRSV优化2
算法
代码游侠7 小时前
C语言核心概念复习——网络协议与TCP/IP
linux·运维·服务器·网络·算法
2301_763472467 小时前
C++20概念(Concepts)入门指南
开发语言·c++·算法
abluckyboy8 小时前
Java 实现求 n 的 n^n 次方的最后一位数字
java·python·算法
园小异8 小时前
2026年技术面试完全指南:从算法到系统设计的实战突破
算法·面试·职场和发展
m0_706653238 小时前
分布式系统安全通信
开发语言·c++·算法