代码随想录算法训练营Day38 || leetCode 7509. 斐波那契数 || 70. 爬楼梯 || 746. 使用最小花费爬楼梯

动态规划和我们数电中学习的时序电路类似,某一时刻的状态不仅与当前时刻的输入有关,还与之前的状态有关,所以推导过程中我们需要模拟题目中的情况,来找到每一时刻状态间的关系。
做题思路如下

509. 斐波那契数

此题简单

状态方程为dp[i]=dp[i-1]+dp[2]

初始状态dp[0]=0,dp[1]=1

cpp 复制代码
class Solution {
public:
    int fib(int n) {
        if (n <= 1) return n;
        int dp[2]={0};
        dp[1]=1;
        for (int i = 2; i <= n; i++){
            int tmp = dp[0]+dp[1];
            dp[0]=dp[1];
            dp[1]=tmp;
        }
        return dp[1];
    }
};

70. 爬楼梯

仔细分析一下就会发现,此题本质也是斐波那契数列

cpp 复制代码
class Solution {
public:
    int climbStairs(int n) {
        if (n <= 2) return n;
        int dp[3] = {0};
        dp[1]=1;
        dp[2]=2;
        for (int i = 3; i <= n; i++){
            dp[0] = dp[1]+dp[2];
            dp[1]=dp[2];
            dp[2]=dp[0];
        }
        return dp[2];
    }
};

746. 使用最小花费爬楼梯

首先小于两层的楼梯可以看作是无花费的,于是从第二层楼梯看起

因为求最小花费,且每次都可爬一到两层

所以dp[i]=min (dp[i-1]+cost[i-1],dp[i-2]+cost[i-2])

由此找到关系写代码即可

cpp 复制代码
class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        int n = cost.size();
        vector<int> dp(n+1,0);
        for(int i = 2; i <= n; i++){
            dp[i] = min (dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
        }
        return dp[n];
    }
};
相关推荐
老鼠只爱大米2 分钟前
LeetCode经典算法面试题 #108:将有序数组转换为二叉搜索树(递归分治、迭代法等多种实现方案详解)
算法·leetcode·二叉树·二叉搜索树·平衡树·分治法
踩坑记录12 分钟前
leetcode hot100 104. 二叉树的最大深度 easy 递归dfs 层序遍历bfs
leetcode·深度优先·宽度优先
独自破碎E31 分钟前
【前缀和+哈希】LCR_011_连续数组
算法·哈希算法
一条大祥脚38 分钟前
26.1.26 扫描线+数论|因子反演+子序列计数|树套树优化最短路
数据结构·算法
m0_5613596741 分钟前
基于C++的机器学习库开发
开发语言·c++·算法
星空露珠1 小时前
速算24点所有题库公式
开发语言·数据库·算法·游戏·lua
2401_832402751 小时前
C++中的类型擦除技术
开发语言·c++·算法
努力学习的小廉1 小时前
我爱学算法之—— 递归回溯综合(二)
开发语言·算法
sheji52611 小时前
JSP基于信息安全的读书网站79f9s--程序+源码+数据库+调试部署+开发环境
java·开发语言·数据库·算法
2301_763472461 小时前
C++网络编程(Boost.Asio)
开发语言·c++·算法