代码随想录算法训练营Day38 || leetCode 7509. 斐波那契数 || 70. 爬楼梯 || 746. 使用最小花费爬楼梯

动态规划和我们数电中学习的时序电路类似,某一时刻的状态不仅与当前时刻的输入有关,还与之前的状态有关,所以推导过程中我们需要模拟题目中的情况,来找到每一时刻状态间的关系。
做题思路如下

509. 斐波那契数

此题简单

状态方程为dp[i]=dp[i-1]+dp[2]

初始状态dp[0]=0,dp[1]=1

cpp 复制代码
class Solution {
public:
    int fib(int n) {
        if (n <= 1) return n;
        int dp[2]={0};
        dp[1]=1;
        for (int i = 2; i <= n; i++){
            int tmp = dp[0]+dp[1];
            dp[0]=dp[1];
            dp[1]=tmp;
        }
        return dp[1];
    }
};

70. 爬楼梯

仔细分析一下就会发现,此题本质也是斐波那契数列

cpp 复制代码
class Solution {
public:
    int climbStairs(int n) {
        if (n <= 2) return n;
        int dp[3] = {0};
        dp[1]=1;
        dp[2]=2;
        for (int i = 3; i <= n; i++){
            dp[0] = dp[1]+dp[2];
            dp[1]=dp[2];
            dp[2]=dp[0];
        }
        return dp[2];
    }
};

746. 使用最小花费爬楼梯

首先小于两层的楼梯可以看作是无花费的,于是从第二层楼梯看起

因为求最小花费,且每次都可爬一到两层

所以dp[i]=min (dp[i-1]+cost[i-1],dp[i-2]+cost[i-2])

由此找到关系写代码即可

cpp 复制代码
class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        int n = cost.size();
        vector<int> dp(n+1,0);
        for(int i = 2; i <= n; i++){
            dp[i] = min (dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
        }
        return dp[n];
    }
};
相关推荐
海洲探索-Hydrovo13 小时前
TTP Aether X 天通透传模块丨国产自主可控大数据双向通讯定位模组
网络·人工智能·科技·算法·信息与通信
2401_8414956416 小时前
【计算机视觉】基于复杂环境下的车牌识别
人工智能·python·算法·计算机视觉·去噪·车牌识别·字符识别
Jonkin-Ma16 小时前
每日算法(1)之单链表
算法
晚风残16 小时前
【C++ Primer】第六章:函数
开发语言·c++·算法·c++ primer
杨云强17 小时前
离散积分,相同表达式数组和公式
算法
地平线开发者17 小时前
征程 6 | BPU trace 简介与实操
算法·自动驾驶
满天星830357717 小时前
【C++】AVL树的模拟实现
开发语言·c++·算法·stl
Lris-KK17 小时前
力扣Hot100--94.二叉树的中序遍历、144.二叉树的前序遍历、145.二叉树的后序遍历
python·算法·leetcode
麦麦鸡腿堡18 小时前
Java的动态绑定机制(重要)
java·开发语言·算法
zy_destiny18 小时前
【工业场景】用YOLOv8实现抽烟识别
人工智能·python·算法·yolo·机器学习·计算机视觉·目标跟踪