基于STC系列单片机实现PNP型三极管S8550驱动共阳数码管或NPN型三极管S8050驱动共阴数码管功能

Digitron.c

javascript 复制代码
#include "Digitron.h"
//#include "Key.h"
#define uchar unsigned char//自定义无符号字符型为uchar
#define uint unsigned int//自定义无符号整数型为uint
//uchar code DigitronBitCodeArray[] = {0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80};//定义八位共阴数码管位码数组变量 为什么不是{0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f} 这才是定义八位共阴数码管位码数组变量 不对吗? 在不使用NPN三极管驱动 用单片机端口直接连接驱动 位码数组是对的 但数码管亮度不够 因此使用了NPN型三极管(比如S8050)来驱动共阴数码管位选 NPN型三极管(比如S8550)基极输入高电平才能导通 解释:共阴数码管 阴极是公共端 对应位选 低电平选通 阳极是显示端 对应段选 高电平选通 由于共阴数码管阴极公共端接单片机来驱动共阴数码管阳极显示端 共阴数码管的亮度会比较低 需要借助NPN型三极管的集电极连接共阴数码管阴极公共端 而NPN型三极管的基电极串个限流电阻连接单片机端口 通过单片机端口输出高电平到NPN型三极管的基电极 从而导通NPN型三极管 放大流过共阴数码管的电流 这样共阴数码管的亮度才会比较亮    
//uchar code DigitronSegmentCodeArray[] = {0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71,0x40,0x00};//定义共阴数码管显示0到F数据及符号"---"及熄灭数组变量
//uchar code DigitronSegmentCodeOfPointArray[] = {0xbf,0x86,0xdb,0xcf,0xe6,0xed,0xfd,0x87,0xff,0xef,0xf7,0xfc,0xb9,0xde,0xf9,0xf1,0x40,0x00};//定义带小数点共阴数码管显示0.到F.数据及符号"---"及熄灭数组变量
uchar code DigitronBitCodeArray[] = {0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f};//定义八位共阳数码管位码数组变量 为什么不是{0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80} 这才是定义八位共阳数码管位码数组变量 不对吗? 在不使用PNP三极管驱动 用单片机端口直接连接驱动 位码数组是对的 但数码管亮度不够 因此使用了PNP型三极管(比如S8550)来驱动共阳数码管位选 PNP型三极管(比如S8550)基极输入低电平才能导通 解释:共阳数码管 阳极是公共端 对应位选 高电平选通 阴极是显示端 对应段选 低电平选通 由于共阳数码管阳极公共端接单片机来驱动共阳数码管阴极显示端 共阳数码管的亮度会比较低 需要借助PNP型三极管的集电极连接共阳数码管阳极公共端 而PNP型三极管的基电极串个限流电阻连接单片机端口 通过单片机端口输出低电平到PNP型三极管的基电极 从而导通PNP型三极管 由外接电源来驱动共阳数码管 这样共阳数码管的亮度才会比较亮    
uchar code DigitronSegmentCodeArray[] = {0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e,0xbf,0xff};//定义共阳数码管显示0到F数据及符号"---"及熄灭数组变量
//uchar code DigitronSegmentCodeOfPointArray[] = {0x40,0x79,0x24,0x30,0x19,0x12,0x02,0x78,0x00,0x10,0x08,0x03,0x46,0x21,0x06,0x0e,0xbf,0xff};//定义带小数点共阳数码管显示0.到F.数据及符号"---"及熄灭数组变量
uchar DigitronCacheDataArray[] = {0,0,0,0};//定义共阳数码管缓存数据数组变量
uchar DigitronBootTimerFlag = 1;//定义共阳数码管开机时间标志位变量 
uint  DigitronBootTimer = 0;//定义数码管开机时间变量
//extern uint KeyPressNumber;//如果在Key.c文件下已经定义按键按下数值变量KeyPressNumber 则以此语句来引用Key.c文件下的按键按下数值变量KeyPressNumber 否则先在Key.c文件下定义按键按下数值变量KeyPressNumber 接着在Key.h文件下的用extern关键字声明按键按下数值变量KeyPressNumber 最后通过在其他.c文件下#include "Key.h" 就可以引用在Key.c文件下已经定义的按键按下数值变量KeyPressNumber
  void DigitronBootDisplay()//数码管开机显示函数
{
   do
  {
    //if(DigitronBootTimer == 500 )//如果数码管开机时间等于1s
    LED0 = ~ LED0;//LED灯亮灭更新
   }while(DigitronBootTimer <= 500);//当数码管开机时间小于5s
   DigitronBootTimerFlag = 0;//数码管开机时间标志位清0
   LED0 = 1;//LED灯熄灭
  }
  void DigitronDisplayDataSplit()//数码管显示数据分解函数
 {
   DigitronCacheDataArray[0] = KeyPressNumber / 1000;//数码管千位数据显示
   DigitronCacheDataArray[1] = KeyPressNumber / 100 % 10;//数码管百位数据显示
   DigitronCacheDataArray[2] = KeyPressNumber / 10 % 10;//数码管十位数据显示
   DigitronCacheDataArray[3] = KeyPressNumber % 10;//数码管个位数据显示
  }
  void DigitronDisplayData()//数码管显示数据函数  
{  
   static uchar i = 0;//定义静态数码管管位变化变量
   switch(i)//数码管管位变化筛选
 {
    case 0 ://数码管千位显示
            DigitronSegmentCode = 0xff;//数码管段码消影
            DigitronSegmentCode = DigitronSegmentCodeArray[DigitronCacheDataArray[0]];//数码管千位的段码显示
            DigitronBitCode = DigitronBitCodeArray[0];//数码管千位码显示
            i++;//数码管管位变化自加1
            break;//跳出
    case 1 ://数码管百位显示
            DigitronSegmentCode = 0xff;//数码管段码消影
            DigitronSegmentCode = DigitronSegmentCodeArray[DigitronCacheDataArray[1]];//数码管百位的段码显示
            DigitronBitCode = DigitronBitCodeArray[1];//数码管百位码显示
            i++;//数码管管位变化自加1
            break;//跳出 
    case 2 ://数码管十位显示
            DigitronSegmentCode = 0xff;//数码管段码消影
            DigitronSegmentCode = DigitronSegmentCodeArray[DigitronCacheDataArray[2]];//数码管十位的段码显示
            DigitronBitCode = DigitronBitCodeArray[2];//数码管十位码显示
            i++;//数码管管位变化自加1
            break;//跳出
    case 3 ://数码管个位显示
            DigitronSegmentCode = 0xff;//数码管段码消影
            DigitronSegmentCode = DigitronSegmentCodeArray[DigitronCacheDataArray[3]];//数码管个位的段码显示
            DigitronBitCode = DigitronBitCodeArray[3];//数码管个位码显示
            i = 0;//数码管管位变化清0
            break;//跳出
    default:break;//跳出
   }
  }

Digitron.h

javascript 复制代码
#ifndef  _DIGITRON_H
#define  _DIGITRON_H
#include "reg51.h"
#define uchar unsigned char//自定义无符号字符型为uchar
#define uint unsigned int//自定义无符号整数型为uint
#define DigitronSegmentCode P0//自定义共阳数码管段码端口为单片机P0组引脚
#define DigitronBitCode P2//自定义共阳数码管位码端口为单片机P2组引脚
sbit LED0 = P1^0;//位定义LED灯为单片机P1.0脚
extern uchar code DigitronBitCodeArray[];//声明八位共阳数码管位码数组变量 可被其他.c文件通过#include "其他.h"引用该变量
extern uchar code DigitronSegmentCodeArray[];//声明共阳数码管显示0到F数据及符号"---"及熄灭数组变量 可被其他.c文件通过#include "其他.h"引用该变量
extern uchar DigitronCacheDataArray[];//声明共阳数码管缓存数据数组变量 可被其他.c文件通过#include "其他.h"引用该变量
extern uchar DigitronBootTimerFlag;//声明共阳数码管开机时间标志位变量 可被其他.c文件通过#include "其他.h"引用该变量
extern uint DigitronBootTimer;//声明数码管开机时间变量 可被其他.c文件通过#include "其他.h"引用该变量
void DigitronBootDisplay();//声明数码管开机显示函数 
void DigitronDisplayDataSplit();//声明数码管显示数据分解函数
void DigitronDisplayData();//声明数码管显示数据函数
void DigitronBootDisplay();//声明数码管开机显示函数
void DigitronDisplayDataSplit();//声明数码管显示数据分解函数
void DigitronDisplayData();//声明数码管显示数据函数
#endif 

Timer0.c

javascript 复制代码
#include "Timer0.h"
#include "Digitron.h"
//#include "Key.h"
/*****关于通过特殊功能寄存器AUXR设定定时器/计数器模式为1T或12T模式不需分频或需12分频8051系列单片机定时器初值(定时计数初值)计算的知识点*****/
  /****
  时钟周期(又称振荡周期):单片机晶振频率的倒数 例:单片机晶振频率12MHz 则时钟周期=[1/(12*10^6)Hz]s=0.000000083s=0.000083ms=0.083us
  机器周期:单片机执行一条指令过程中需要完成一个基本操作(如:取指、译码、执行等基本操作)所需的时间 8051系列单片机的一个机器周期由6个S周期(状态周期)组成 一个时钟周期定义为一个节拍(用P表示) 二个节拍定义为一个状态周期(用S表示) 那么8051单片机的机器周期由6个状态周期组成 也就是说一个机器周期=6个状态周期=12个时钟周期=[12x[1/(12*10^6)Hz]s]s=0.000001s=0.001ms=1us
  指令周期:单片机取出一条指令且执行完这条指令所需的时间
  以上三者间的关系:指令周期>机器周期>时钟周期
  一、以下是8051单片机定时器用12分频计算定时器初值的一种计算公式(以单片机晶振频率为12MHz 定时器0工作模式为16位定时模式1 需要定时1ms来计算):
   0、计算nT单片机机器周期T公式:T=n*(1/晶振频率)=几us
   1、一个机器周期=12个时钟周期=12乘以单片机晶振频率的倒数=12*[1/(12*10^6)Hz]s=0.000001s=0.001ms=1us
   2、定时时间=定时计数*一个机器周期 1ms=定时计数*1us 定时计数=1ms/1us=1000us/1us=1000次
   3、定时器初值(定时计数初值)=2^n-定时计数 n为几位定时器 此处n=16 则定时器初值(定时计数初值)=2^16-1000=65536-1000=64536 把64536转化成十六进制 拆开成高八位和低八位 高八位放TH0=0xfc或(65536-64536)/256 低八位放TL0=0x18或(65536-64536)%256
  二、以下是8051单片机定时器用12分频或不分频计算定时器初值的另外一种计算公式(以单片机晶振频率为12MHz 定时器0工作模式为16位定时模式1 需要定时1ms来计算):
   1、综合公式:定时器初值(定时计数初值)=2^n-(晶振频率/几分频/定时频率) n为几位定时器 该公式常用于脉冲宽度调制中运算 例如:利用8051系列单片机晶振频率为12MHz的定时器0的16位定时模式1来产生1KHz方波脉冲 由此可知:定时时间=1/定时频率=1/1000Hz=0.001s=1ms=1000us 进而可得:定时器初值(定时计数初值)=2^n-(晶振频率/几分频/定时频率)=2^16-(12MHz/12/1KHz)=2^16-(12*10^6)Hz/12/1000Hz)=65536-1000=64536 把64536转化成十六进制 拆开成高八位和低八位 高八位放TH0=0xfc或(65536-64536)/256或Value >> 8 低八位放TL0=0x18或(65536-64536)%256或=Value 
   2、TH0 = Value >> 8;TL0 = Value;该两句代码解释如下:
  (1)、TH0 = Value >> 8相当于TH0 = (65536-10000)/256=55536/256=216.9375 分析:65536-10000=55536转化成二进制为11011000 11110000 55536/256=216.9375转化成二进制为11011000 由此可看出Value为(65536-10000)=55536的二进制数11011000 11110000右移8位就可以得到55536/256=216.9375的二进制数11011000
  (2)、TL0 = Value相当于TL0 = (65536-时器初值的另外一种计算公式(以单片机晶振频率为12MHz 定时器0工作模式为16位定时模式1 需要定时1ms来计算):
 (一)、以下是8051单片机定时器用12分频计算定时器初值:
     定时器初值(定时计数初值)=2^n-(晶振频率/几分频/定时频率) n为几位定时器 该公式常用于脉冲宽度调制中运算 例如:利用8051系列单片机晶振频率为12MHz的定时器0的16位定时模式1来产生1KHz方波脉冲(相当于定时1ms) 由此可知:定时时间=1/定时频率=1/1000Hz=0.001s=1ms=1000us 进而可得:定时器初值(定时计数初值)=2^n-(晶振频率/几分频/定时频率)=2^16-(12MHz/12/1KHz)=2^16-(12*10^6)Hz/12/1000Hz)=65536-1000=64536 把64536转化成十六进制 拆开成高八位和低八位 高八位放TH0=0xfc或(65536-64536)/256或Value >> 8 低八位放TL0=0x18或(65536-64536)%256或=Value 
 (二)、以下是8051单片机定时器不用分频计算定时器初值:
     定时器初值(定时计数初值)=2^n-(晶振频率/几分频/定时频率) n为几位定时器 该公式常用于脉冲宽度调制中运算 例如:利用8051系列单片机晶振频率为12MHz的定时器0的16位定时模式1来产生1KHz方波脉冲(相当于定时1ms) 由此可知:定时时间=1/定时频率=1/1000Hz=0.001s=1ms=1000us 进而可得:定时器初值(定时计数初值)=2^n-(晶振频率/几分频/定时频率)=2^16-(12MHz/1/1KHz)=2^16-(12*10^6)Hz/1/1000Hz)=65536-12000=53536 把53536转化成十六进制 拆开成高八位和低八位 高八位放TH0=0xd1或(65536-53536)/256或Value >> 8 低八位放TL0=0x20或(65536-53536)%256或=Value
 (三)、TH0 = Value >> 8;TL0 = Value;该两句代码解释如下:
     1、TH0 = Value >> 8相当于TH0 = (65536-10000)/256=55536/256=216.9375 分析:65536-10000=55536转化成二进制为11011000 11110000 55536/256=216.9375转化成二进制为11011000 由此可看出Value为(65536-10000)=55536的二进制数11011000 11110000右移8位就可以得到55536/256=216.9375的二进制数11011000
     2、TL0 = Value相当于TL0 = (65536-10000)%256=55536%256=240 分析:65536-10000=55536转化成二进制为11011000 11110000 55536%256=240转化成二进制为11110000 由此可看出Value为(65536-10000)=55536的二进制数11011000 11110000取低8位就可以得到55536%256=240的二进制数11110000
 (四)、由定时器定时初值(定时计数初值)推导出定时器定时时间步骤如下:
     1、如果定时器定时初值(定时计数初值)是拆开成高八位和低八位赋值形式 如:TH0=0xfc TL0=0x18 先把高八位和低八位赋值组成一个十六位数据0xfc18 转化成十进制数据64536 用2^n-64536算出每秒产生的脉冲数 其中n为几位定时器 再根据公式计算定时时间 如:由公式:每秒产生的脉冲数=晶振频率/几分频/定时频率  转换成:每秒产生的脉冲数=晶振频率x定时频率/几分频 可求:定时频率=(每秒产生的脉冲数x几分频)/晶振频率 进而求出:定时时间=1/定时频率=1/[(每秒产生的脉冲数x几分频)/晶振频率]  转换成:晶振频率/(每秒产生的脉冲数x几分频)=定时时间
     2、如果定时器定时初值(定时计数初值)是十进制数据 如:64536 直接用2^n-64536算出每秒产生的脉冲数 其中n为几位定时器 再根据公式计算定时时间 如:由公式:每秒产生的脉冲数=晶振频率/几分频/定时频率  转换成:每秒产生的脉冲数=晶振频率x定时频率/几分频 可求:定时频率=(每秒产生的脉冲数x几分频)/晶振频率 进而求出:定时时间=1/定时频率=1/[(每秒产生的脉冲数x几分频)/晶振频率]  转换成:晶振频率/(每秒产生的脉冲数x几分频)=定时时间
  ****/
#define uchar unsigned char//自定义无符号字符型为uchar
#define uint unsigned int//自定义无符号整数型为uint
  void Timer0Init()//定时器0的16位定时模式1用12分频定时2ms初始化函数 晶振为12MHz
{
   //AUXR &= 0x7f;//设定定时器/计数器模式为12T
   TMOD &= 0xf0;//设定定时器/计数器工作模式清0
   TMOD |= 0x01;//设定定时器/计数器为定时器 工作模式为16位定时器0模式1
   TH0 = 0xf8;//设定定时器0高8位初值
   TL0 = 0x30;//设定定时器0低8位初值
   TF0 = 0;//定时器0溢出中断标志位清0
   ET0 = 1;//打开定时器0中断开关
   EA = 1;//打开定时器中断总开关
   TR0 = 1;//打开定时器0开关
  } 
  void Timer0() interrupt 1//定时器0的16位定时模式1用12分频定时2ms中断函数 晶振为12MHz
{
   TR0 = 0;//关定时器0开关
   if(DigitronBootTimerFlag == 1)//数码管开机时间标志位置1
 {
    DigitronBootTimer++;//数码管开机时间自加
   }
   if(DigitronBootTimerFlag == 0)//判断共阳数码管开机时间标志位是否等于0
 { 
    DigitronDisplayDataSplit();//数码管显示数据分解函数
    DigitronDisplayData();//数码管显示数据函数
    //KeyScan();//按键扫描函数 该函数放在定时器定时2ms的中断函数中扫描
   }
   TH0 = 0xf8;//设定定时器0计数高8位初值
   TL0 = 0x30;//设定定时器0计数低8位初值
   TR0 = 1;//开定时器0开关
  }

Timer0.h

javascript 复制代码
#ifndef  _TIMER0_H
#define  _TIMER0_H
#include "reg51.h"
#define uchar unsigned char//自定义无符号字符型为uchar
#define uint unsigned int//自定义无符号整数型为uint
void Timer0Init();//声明定时器0初始化函数
#endif 
相关推荐
m0_748254091 小时前
STM32--超声波模块(HC—SR04)(标准库+HAL库)
stm32·单片机·嵌入式硬件
南城花随雪。1 小时前
单片机:实现FFT快速傅里叶变换算法(附带源码)
单片机·嵌入式硬件·算法
逝灮1 小时前
【蓝桥杯——物联网设计与开发】基础模块8 - RTC
stm32·单片机·嵌入式硬件·mcu·物联网·蓝桥杯·rtc
LXL_242 小时前
模拟——郑益慧_笔记1_绪论
嵌入式硬件
weixin_452600698 小时前
串行时钟保持芯片D1380/D1381,低功耗工作方式自带秒、分、时、日、日期、月、年的串行时钟保持芯片,每个月多少天以及闰年能自动调节
科技·单片机·嵌入式硬件·时钟·白色家电电源·微机串行时钟
森旺电子11 小时前
51单片机仿真摇号抽奖机源程序 12864液晶显示
单片机·嵌入式硬件·51单片机
不过四级不改名67713 小时前
蓝桥杯嵌入式备赛教程(1、led,2、lcd,3、key)
stm32·嵌入式硬件·蓝桥杯
小A15913 小时前
STM32完全学习——SPI接口的FLASH(DMA模式)
stm32·嵌入式硬件·学习
Rorsion13 小时前
各种电机原理介绍
单片机·嵌入式硬件
善 .16 小时前
单片机的内存是指RAM还是ROM
单片机·嵌入式硬件