golang的协程和通道,之前就看过了,一直没有很好的理解,所以一直也没记录,今天看书,看到有一个总结的章节,里面记录了一些注意事项,因此写个文档,记录一下,避免以后自己忘了或者是找不见资料
顺便吐槽下公司的业务,自己负责的业务能啥也不知道,开发完了给他们上线了,完事还问你,这个为什么会这样,这不是你要求的吗?UAT的时候业务全程参加,都看过了,没问题才上线,过了一个月尽然能忘得一干二净。
出于性能考虑的建议:实践经验表明,为了使并行运算获得高于串行运算的效率,在协程内部完成的工作量,必须远远高于协程的创建和相互来回通信的开销。
出于性能考虑建议使用带缓存的通道:使用带缓存的通道可以很轻易成倍提高它的吞吐量,某些场景其性能可以提高至 10 倍甚至更多。通过调整通道的容量,甚至可以尝试着更进一步的优化其性能。
限制一个通道的数据数量并将它们封装成一个数组:如果使用通道传递大量单独的数据,那么通道将变成性能瓶颈。然而,将数据块打包封装成数组,在接收端解压数据时,性能可以提高至 10 倍。
现在创建一个带缓存的通道:ch := make(chan type,buf)(1)如何使用 for 或者 for-range 遍历一个通道:(尽量使用这种或者是跟select配合使用)
这种其实就是一个for循环遍历通道,但是golang的机制,这里会自动监测通道是否关闭,而不需要开发二次判断通道是否关闭
但是这里有个坑需要注意,会有死锁的问题,因为你的通道中没有数据的时候,for range ch 会发生阻塞,但是无法解除阻塞,发生死锁
go
for v := range ch {
// do something with v
}
(2)如何检测一个通道 ch 是否关闭:
go
//read channel until it closes or error-condition
for {
if input, open := <-ch; !open {
// 这里!open,就是表示通道已经被关了,break跳出循环,不从通道里面获取数据了
break
}
fmt.Printf("%s", input)
}
(3)如何通过一个通道让主程序等待直到协程完成(信号量模式):如果希望程序一直阻塞,在匿名函数中省略 ch <- 1 即可。
go
ch := make(chan int) // Allocate a channel.
// Start something in a goroutine; when it completes, signal on the channel.
go func() {
// doSomething
ch <- 1 // Send a signal; value does not matter.
}()
doSomethingElseForAWhile()
<-ch // Wait for goroutine to finish; discard sent value.
go
func compute(ch chan int){
ch <- someComputation() // when it completes, signal on the channel.
}
func main(){
ch := make(chan int) // allocate a channel.
go compute(ch) // start something in a goroutines
doSomethingElseForAWhile()
result := <- ch
}
(4)通道的工厂模板:以下函数是一个通道工厂,启动一个匿名函数作为协程以生产通道:
go
func pump() chan int {
ch := make(chan int)
go func() {
for i := 0; ; i++ {
ch <- i
}
}()
return ch
}
(5)通道迭代器模板:
go
func (c *container) Iter () <- chan item {
ch := make(chan item)
go func () {
for i:= 0; i < c.Len(); i++{ // or use a for-range loop
ch <- c.items[i]
}
} ()
return ch
}
go
for x := range container.Iter() { ... }
(6)如何限制并发处理请求的数量
go
package main
const MAXREQS = 50
var sem = make(chan int, MAXREQS)
type Request struct {
a, b int
replyc chan int
}
func process(r *Request) {
// do something
}
func handle(r *Request) {
sem <- 1 // doesn't matter what we put in it
process(r)
<-sem // one empty place in the buffer: the next request can start
}
func server(service chan *Request) {
for {
request := <-service
go handle(request)
}
}
func main() {
service := make(chan *Request)
go server(service)
}
(7)如何在多核CPU上实现并行计算:
go
func DoAll(){
sem := make(chan int, NCPU) // Buffering optional but sensible
for i := 0; i < NCPU; i++ {
go DoPart(sem)
}
// Drain the channel sem, waiting for NCPU tasks to complete
for i := 0; i < NCPU; i++ {
<-sem // wait for one task to complete
}
// All done.
}
func DoPart(sem chan int) {
// do the part of the computation
sem <-1 // signal that this piece is done
}
func main() {
runtime.GOMAXPROCS(NCPU) // runtime.GOMAXPROCS = NCPU
DoAll()
}
(8)如何终止一个协程:runtime.Goexit()
(9)简单的超时模板:
go
timeout := make(chan bool, 1)
go func() {
time.Sleep(1e9) // one second
timeout <- true
}()
select {
case <-ch:
// a read from ch has occurred
case <-timeout:
// the read from ch has timed out
}
(10)如何使用输入通道和输出通道代替锁:
go
func Worker(in, out chan *Task) {
for {
t := <-in
process(t)
out <- t
}
}
(11)如何在同步调用运行时间过长时将之丢弃:
go
// 注意缓冲大小设置为 1 是必要的,可以避免协程死锁以及确保超时的通道可以被垃圾回收。
// 此外,需要注意在有多个 case 符合条件时, select 对 case 的选择是伪随机的
// 如果代码稍作修改如下
// 则 select 语句可能不会在定时器超时信号到来时立刻选中 time.After(timeoutNs) 对应的 case
// 因此协程可能不会严格按照定时器设置的时间结束。
ch := make(chan int, 1)
go func() { for { ch <- 1 } } ()
L:
for {
select {
case <-ch:
// do something
case <-time.After(timeoutNs):
// call timed out
break L
}
}
(12)如何在通道中使用计时器和定时器:定时器 (Timer) 结构体和计时器 (Ticker) 结构体
go
package main
import (
"fmt"
"time"
)
func main() {
tick := time.Tick(1e8)
boom := time.After(5e8)
for {
select {
case <-tick:
fmt.Println("tick.")
case <-boom:
fmt.Println("BOOM!")
return
default:
fmt.Println(" .")
time.Sleep(5e7)
}
}
}