CUDA、cudnn和OnnxRuntime版本对应

NVIDIA - CUDA | onnxruntime

Requirements

Please reference table below for official GPU packages dependencies for the ONNX Runtime inferencing package. Note that ONNX Runtime Training is aligned with PyTorch CUDA versions; refer to the Training tab on onnxruntime.ai for supported versions.

Note: Because of CUDA Minor Version Compatibility, ONNX Runtime built with CUDA 11.8 should be compatible with any CUDA 11.x version. Please reference Nvidia CUDA Minor Version Compatibility.

ONNX Runtime CUDA cuDNN Notes
1.17 12.2 8.9.2.26 (Linux) 8.9.2.26 (Windows) The default CUDA version for ORT 1.17 is CUDA 11.8. To install CUDA 12 package, please look at Install ORT. Due to low demand on Java GPU package, only C++/C# Nuget and Python packages are released with CUDA 12.2
1.15 1.16 1.17 11.8 8.2.4 (Linux) 8.5.0.96 (Windows) Tested with CUDA versions from 11.6 up to 11.8, and cuDNN from 8.2.4 up to 8.7.0
1.14 1.13.1 1.13 11.6 8.2.4 (Linux) 8.5.0.96 (Windows) libcudart 11.4.43 libcufft 10.5.2.100 libcurand 10.2.5.120 libcublasLt 11.6.5.2 libcublas 11.6.5.2 libcudnn 8.2.4
1.12 1.11 11.4 8.2.4 (Linux) 8.2.2.26 (Windows) libcudart 11.4.43 libcufft 10.5.2.100 libcurand 10.2.5.120 libcublasLt 11.6.5.2 libcublas 11.6.5.2 libcudnn 8.2.4
1.10 11.4 8.2.4 (Linux) 8.2.2.26 (Windows) libcudart 11.4.43 libcufft 10.5.2.100 libcurand 10.2.5.120 libcublasLt 11.6.1.51 libcublas 11.6.1.51 libcudnn 8.2.4
1.9 11.4 8.2.4 (Linux) 8.2.2.26 (Windows) libcudart 11.4.43 libcufft 10.5.2.100 libcurand 10.2.5.120 libcublasLt 11.6.1.51 libcublas 11.6.1.51 libcudnn 8.2.4
1.8 11.0.3 8.0.4 (Linux) 8.0.2.39 (Windows) libcudart 11.0.221 libcufft 10.2.1.245 libcurand 10.2.1.245 libcublasLt 11.2.0.252 libcublas 11.2.0.252 libcudnn 8.0.4
1.7 11.0.3 8.0.4 (Linux) 8.0.2.39 (Windows) libcudart 11.0.221 libcufft 10.2.1.245 libcurand 10.2.1.245 libcublasLt 11.2.0.252 libcublas 11.2.0.252 libcudnn 8.0.4
1.5-1.6 10.2 8.0.3 CUDA 11 can be built from source
1.2-1.4 10.1 7.6.5 Requires cublas10-10.2.1.243; cublas 10.1.x will not work
1.0-1.1 10.0 7.6.4 CUDA versions from 9.1 up to 10.1, and cuDNN versions from 7.1 up to 7.4 should also work with Visual Studio 2017

For older versions, please reference the readme and build pages on the release branch.

For Windows, Microsoft C and C++ (MSVC) runtime libraries is also required.

相关推荐
galileo20161 分钟前
LLM与金融
人工智能
真真-真真7 分钟前
WebXR
linux·运维·服务器
DREAM依旧17 分钟前
隐马尔科夫模型|前向算法|Viterbi 算法
人工智能
轩辰~29 分钟前
网络协议入门
linux·服务器·开发语言·网络·arm开发·c++·网络协议
GocNeverGiveUp30 分钟前
机器学习2-NumPy
人工智能·机器学习·numpy
雨中rain1 小时前
Linux -- 从抢票逻辑理解线程互斥
linux·运维·c++
B站计算机毕业设计超人1 小时前
计算机毕业设计PySpark+Hadoop中国城市交通分析与预测 Python交通预测 Python交通可视化 客流量预测 交通大数据 机器学习 深度学习
大数据·人工智能·爬虫·python·机器学习·课程设计·数据可视化
学术头条1 小时前
清华、智谱团队:探索 RLHF 的 scaling laws
人工智能·深度学习·算法·机器学习·语言模型·计算语言学
18号房客2 小时前
一个简单的机器学习实战例程,使用Scikit-Learn库来完成一个常见的分类任务——**鸢尾花数据集(Iris Dataset)**的分类
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理·sklearn
feifeikon2 小时前
机器学习DAY3 : 线性回归与最小二乘法与sklearn实现 (线性回归完)
人工智能·机器学习·线性回归