CUDA、cudnn和OnnxRuntime版本对应

NVIDIA - CUDA | onnxruntime

Requirements

Please reference table below for official GPU packages dependencies for the ONNX Runtime inferencing package. Note that ONNX Runtime Training is aligned with PyTorch CUDA versions; refer to the Training tab on onnxruntime.ai for supported versions.

Note: Because of CUDA Minor Version Compatibility, ONNX Runtime built with CUDA 11.8 should be compatible with any CUDA 11.x version. Please reference Nvidia CUDA Minor Version Compatibility.

ONNX Runtime CUDA cuDNN Notes
1.17 12.2 8.9.2.26 (Linux) 8.9.2.26 (Windows) The default CUDA version for ORT 1.17 is CUDA 11.8. To install CUDA 12 package, please look at Install ORT. Due to low demand on Java GPU package, only C++/C# Nuget and Python packages are released with CUDA 12.2
1.15 1.16 1.17 11.8 8.2.4 (Linux) 8.5.0.96 (Windows) Tested with CUDA versions from 11.6 up to 11.8, and cuDNN from 8.2.4 up to 8.7.0
1.14 1.13.1 1.13 11.6 8.2.4 (Linux) 8.5.0.96 (Windows) libcudart 11.4.43 libcufft 10.5.2.100 libcurand 10.2.5.120 libcublasLt 11.6.5.2 libcublas 11.6.5.2 libcudnn 8.2.4
1.12 1.11 11.4 8.2.4 (Linux) 8.2.2.26 (Windows) libcudart 11.4.43 libcufft 10.5.2.100 libcurand 10.2.5.120 libcublasLt 11.6.5.2 libcublas 11.6.5.2 libcudnn 8.2.4
1.10 11.4 8.2.4 (Linux) 8.2.2.26 (Windows) libcudart 11.4.43 libcufft 10.5.2.100 libcurand 10.2.5.120 libcublasLt 11.6.1.51 libcublas 11.6.1.51 libcudnn 8.2.4
1.9 11.4 8.2.4 (Linux) 8.2.2.26 (Windows) libcudart 11.4.43 libcufft 10.5.2.100 libcurand 10.2.5.120 libcublasLt 11.6.1.51 libcublas 11.6.1.51 libcudnn 8.2.4
1.8 11.0.3 8.0.4 (Linux) 8.0.2.39 (Windows) libcudart 11.0.221 libcufft 10.2.1.245 libcurand 10.2.1.245 libcublasLt 11.2.0.252 libcublas 11.2.0.252 libcudnn 8.0.4
1.7 11.0.3 8.0.4 (Linux) 8.0.2.39 (Windows) libcudart 11.0.221 libcufft 10.2.1.245 libcurand 10.2.1.245 libcublasLt 11.2.0.252 libcublas 11.2.0.252 libcudnn 8.0.4
1.5-1.6 10.2 8.0.3 CUDA 11 can be built from source
1.2-1.4 10.1 7.6.5 Requires cublas10-10.2.1.243; cublas 10.1.x will not work
1.0-1.1 10.0 7.6.4 CUDA versions from 9.1 up to 10.1, and cuDNN versions from 7.1 up to 7.4 should also work with Visual Studio 2017

For older versions, please reference the readme and build pages on the release branch.

For Windows, Microsoft C and C++ (MSVC) runtime libraries is also required.

相关推荐
xjxijd30 分钟前
Serverless 3.0 混合架构:容器 + 事件驱动,AI 服务弹性伸缩响应快 3 倍
人工智能·架构·serverless
csdn_aspnet34 分钟前
如何用爬虫、机器学习识别方式屏蔽恶意广告
人工智能·爬虫·机器学习
weixin_4577600039 分钟前
RNN(循环神经网络)原理
人工智能·rnn·深度学习
徐子元竟然被占了!!43 分钟前
Linux-top
linux·运维·windows
代码AI弗森1 小时前
意图识别深度原理解析:从向量空间到语义流形
人工智能
fufu03111 小时前
Linux环境下的C语言编程(四十二)
linux·c语言·算法
姚华军1 小时前
RagFlow、Dify部署时,端口如何调整成指定端口
人工智能·dify·ragflow
Trouvaille ~1 小时前
【Linux】进程调度与环境变量:Linux内核的智慧
linux·运维·服务器·操作系统·进程·环境变量·调度算法
HalvmånEver1 小时前
Linux : 基础IO(三)
linux·运维·算法
老蒋新思维1 小时前
创客匠人峰会新视角:AI 时代知识变现的 “组织化转型”—— 从个人 IP 到 “AI+IP” 组织的增长革命
大数据·人工智能·网络协议·tcp/ip·创始人ip·创客匠人·知识变现