CUDA、cudnn和OnnxRuntime版本对应

NVIDIA - CUDA | onnxruntime

Requirements

Please reference table below for official GPU packages dependencies for the ONNX Runtime inferencing package. Note that ONNX Runtime Training is aligned with PyTorch CUDA versions; refer to the Training tab on onnxruntime.ai for supported versions.

Note: Because of CUDA Minor Version Compatibility, ONNX Runtime built with CUDA 11.8 should be compatible with any CUDA 11.x version. Please reference Nvidia CUDA Minor Version Compatibility.

ONNX Runtime CUDA cuDNN Notes
1.17 12.2 8.9.2.26 (Linux) 8.9.2.26 (Windows) The default CUDA version for ORT 1.17 is CUDA 11.8. To install CUDA 12 package, please look at Install ORT. Due to low demand on Java GPU package, only C++/C# Nuget and Python packages are released with CUDA 12.2
1.15 1.16 1.17 11.8 8.2.4 (Linux) 8.5.0.96 (Windows) Tested with CUDA versions from 11.6 up to 11.8, and cuDNN from 8.2.4 up to 8.7.0
1.14 1.13.1 1.13 11.6 8.2.4 (Linux) 8.5.0.96 (Windows) libcudart 11.4.43 libcufft 10.5.2.100 libcurand 10.2.5.120 libcublasLt 11.6.5.2 libcublas 11.6.5.2 libcudnn 8.2.4
1.12 1.11 11.4 8.2.4 (Linux) 8.2.2.26 (Windows) libcudart 11.4.43 libcufft 10.5.2.100 libcurand 10.2.5.120 libcublasLt 11.6.5.2 libcublas 11.6.5.2 libcudnn 8.2.4
1.10 11.4 8.2.4 (Linux) 8.2.2.26 (Windows) libcudart 11.4.43 libcufft 10.5.2.100 libcurand 10.2.5.120 libcublasLt 11.6.1.51 libcublas 11.6.1.51 libcudnn 8.2.4
1.9 11.4 8.2.4 (Linux) 8.2.2.26 (Windows) libcudart 11.4.43 libcufft 10.5.2.100 libcurand 10.2.5.120 libcublasLt 11.6.1.51 libcublas 11.6.1.51 libcudnn 8.2.4
1.8 11.0.3 8.0.4 (Linux) 8.0.2.39 (Windows) libcudart 11.0.221 libcufft 10.2.1.245 libcurand 10.2.1.245 libcublasLt 11.2.0.252 libcublas 11.2.0.252 libcudnn 8.0.4
1.7 11.0.3 8.0.4 (Linux) 8.0.2.39 (Windows) libcudart 11.0.221 libcufft 10.2.1.245 libcurand 10.2.1.245 libcublasLt 11.2.0.252 libcublas 11.2.0.252 libcudnn 8.0.4
1.5-1.6 10.2 8.0.3 CUDA 11 can be built from source
1.2-1.4 10.1 7.6.5 Requires cublas10-10.2.1.243; cublas 10.1.x will not work
1.0-1.1 10.0 7.6.4 CUDA versions from 9.1 up to 10.1, and cuDNN versions from 7.1 up to 7.4 should also work with Visual Studio 2017

For older versions, please reference the readme and build pages on the release branch.

For Windows, Microsoft C and C++ (MSVC) runtime libraries is also required.

相关推荐
心灵宝贝13 小时前
CentOS 7 安装 bzip2-libs-1.0.6-13.el7.x86_64.rpm 的详细步骤
linux·运维·centos
mjx653014 小时前
windows查看端口使用情况,以及结束任务释放端口
linux
九皇叔叔15 小时前
Linux Shell 函数:从定义到实战,让脚本更高效
linux·运维·chrome·shell
缘华工业智维15 小时前
工业设备预测性维护:能源成本降低的“隐藏钥匙”?
大数据·网络·人工智能
DooTask官方号16 小时前
跨语言协作新范式:阿里云Qwen-MT与DooTask的翻译技术突破
人工智能·ai·项目管理·机器翻译·dootask
凯禾瑞华养老实训室17 小时前
聚焦生活照护能力培育:老年生活照护实训室建设清单的模块设计与资源整合
大数据·人工智能·科技·ar·vr·智慧养老·智慧健康养老服务与管理
倔强青铜三17 小时前
苦练Python第64天:从零掌握多线程,threading模块全面指南
人工智能·python·面试
格林威17 小时前
偏振相机是否属于不同光谱相机的范围内
图像处理·人工智能·数码相机·计算机视觉·视觉检测·工业相机
璞致电子18 小时前
fpga开发板ZYNQ 璞致 PZ7010/7020 邮票孔核心板简介-ZYNQ7000系列小系统学习板
linux·嵌入式硬件·学习·fpga开发·fpga·fpga开发板·xilinx开发板
A-大程序员18 小时前
【pytorch】合并与分割
人工智能·pytorch·深度学习