ViTMatte:Boosting image matting with pretrained plain vision transformers

自sora之后,我也要多思考,transformer的scaling law在各个子领域中是不是真的会产生智能,conv的叠加从resnet之后就讨论过,宽或者深都没有办法做到极限,大概sam这种思路是最好的实证。

1.introduction

引入了ViT adaptation策略和detail capture module。

2.Methodology

2.2 Overall architecture

给定一个RGB图像HXWX3以及其对应的trimap HXWX1,按通道连接它们并输入到ViTMatte中,ViT作为基础特征提取器,生成一个stride=16的单个特征图,detail capture模块由一系列卷积层组成,用于捕捉和融合图像matting中的详细信息,简单的在不同尺度上采样和融合特征,以预测最终的alpha。

2.3 Vision transformer adaptation

将普通VIT中的block分层m组G,每个组中包含n个transformer块,对于G中的块,我们仅在最后一个块bn中应用全局注意力,而在其他块中使用窗口注意力,而非全局注意力。在每组transformer块后面加入一个卷积块,并利用残差连结将每组的结果前馈,卷积块等于组数,采用ResBottleneck。

2.4 Detail capture module

已经加入一个轻量级的细节捕捉模块,以有效的捕捉更精细的细节,该模块包括一个卷积流和一个简单的融合策略。由一些列的3x3conv组成,每一层包括一个卷积层,核大小为3,批归一化和relu,双线性插值。

2.5 Training scheme

ViT初始权重(DINO和MAE的预训练权重初始化ViTMatte-S和ViTMatte-B),并随机初始化额外部分,输入通道是4个,而不是3个,随机裁剪512x512,在两个V100上训练了100个epoch,ViTMatte-B的bs为32,ViTMatte-S的bs为20.

3.experiments

相关推荐
AI_56782 分钟前
智慧交通:基于边缘计算的信号灯智能调度系统
人工智能·边缘计算
min1811234566 分钟前
因果推理在机器学习中的集成路径
人工智能
小鸡吃米…11 分钟前
机器学习——生态系统
人工智能·机器学习
说私域19 分钟前
基于开源AI大模型、AI智能名片与商城小程序的购物中心“人货场车”全面数字化解决方案研究
人工智能·小程序·开源
丝斯201119 分钟前
AI学习笔记整理(38)——自然语言处理的‌基于深度学习的语言模型
人工智能·学习·自然语言处理
小毅&Nora21 分钟前
【人工智能】【大模型】大语言模型最新进展:2025年技术演进与实用指南
人工智能·语言模型·自然语言处理
Codebee22 分钟前
惊了!ooder-org藏提示词彩蛋|AI驱动工程典范,1小时焕新DSM全靠A2UI
人工智能·编程语言·全栈
Coder_Boy_25 分钟前
基于SpringAI的智能平台基座开发-(二)
java·人工智能·springboot·aiops·langchain4j
编码小哥25 分钟前
OpenCV轮廓检测与绘制实战
人工智能·opencv·计算机视觉
许泽宇的技术分享33 分钟前
当AI开始“画“界面:A2UI协议如何让.NET应用告别写死的UI
人工智能·ui·.net·blazor·a2ui