ViTMatte:Boosting image matting with pretrained plain vision transformers

自sora之后,我也要多思考,transformer的scaling law在各个子领域中是不是真的会产生智能,conv的叠加从resnet之后就讨论过,宽或者深都没有办法做到极限,大概sam这种思路是最好的实证。

1.introduction

引入了ViT adaptation策略和detail capture module。

2.Methodology

2.2 Overall architecture

给定一个RGB图像HXWX3以及其对应的trimap HXWX1,按通道连接它们并输入到ViTMatte中,ViT作为基础特征提取器,生成一个stride=16的单个特征图,detail capture模块由一系列卷积层组成,用于捕捉和融合图像matting中的详细信息,简单的在不同尺度上采样和融合特征,以预测最终的alpha。

2.3 Vision transformer adaptation

将普通VIT中的block分层m组G,每个组中包含n个transformer块,对于G中的块,我们仅在最后一个块bn中应用全局注意力,而在其他块中使用窗口注意力,而非全局注意力。在每组transformer块后面加入一个卷积块,并利用残差连结将每组的结果前馈,卷积块等于组数,采用ResBottleneck。

2.4 Detail capture module

已经加入一个轻量级的细节捕捉模块,以有效的捕捉更精细的细节,该模块包括一个卷积流和一个简单的融合策略。由一些列的3x3conv组成,每一层包括一个卷积层,核大小为3,批归一化和relu,双线性插值。

2.5 Training scheme

ViT初始权重(DINO和MAE的预训练权重初始化ViTMatte-S和ViTMatte-B),并随机初始化额外部分,输入通道是4个,而不是3个,随机裁剪512x512,在两个V100上训练了100个epoch,ViTMatte-B的bs为32,ViTMatte-S的bs为20.

3.experiments

相关推荐
pen-ai4 分钟前
【NLP】15. NLP推理方法详解 --- 动态规划:序列标注,语法解析,共同指代
人工智能·自然语言处理·动态规划
Chaos_Wang_11 分钟前
NLP高频面试题(二十九)——大模型解码常见参数解析
人工智能·自然语言处理
Acrelhuang18 分钟前
8.3MW屋顶光伏+光储协同:上海汽车变速器低碳工厂的能源革命-安科瑞黄安南
大数据·数据库·人工智能·物联网·数据库开发
区块链蓝海18 分钟前
沉浸式体验测评|AI Ville:我在Web3小镇“生活”了一周
人工智能·web3·生活
whaosoft-14333 分钟前
51c自动驾驶~合集15
人工智能
花楸树34 分钟前
前端搭建 MCP Client(Web版)+ Server + Agent 实践
前端·人工智能
用户876128290737444 分钟前
前端ai对话框架semi-design-vue
前端·人工智能
量子位44 分钟前
稚晖君刚挖来的 90 后机器人大牛:逆袭履历堪比爽文男主
人工智能·llm
量子位1 小时前
200 亿机器人独角兽被曝爆雷,官方回应来了
人工智能·llm
机器之心1 小时前
细节厘米级还原、实时渲染,MTGS方法突破自动驾驶场景重建瓶颈
人工智能