ViTMatte:Boosting image matting with pretrained plain vision transformers

自sora之后,我也要多思考,transformer的scaling law在各个子领域中是不是真的会产生智能,conv的叠加从resnet之后就讨论过,宽或者深都没有办法做到极限,大概sam这种思路是最好的实证。

1.introduction

引入了ViT adaptation策略和detail capture module。

2.Methodology

2.2 Overall architecture

给定一个RGB图像HXWX3以及其对应的trimap HXWX1,按通道连接它们并输入到ViTMatte中,ViT作为基础特征提取器,生成一个stride=16的单个特征图,detail capture模块由一系列卷积层组成,用于捕捉和融合图像matting中的详细信息,简单的在不同尺度上采样和融合特征,以预测最终的alpha。

2.3 Vision transformer adaptation

将普通VIT中的block分层m组G,每个组中包含n个transformer块,对于G中的块,我们仅在最后一个块bn中应用全局注意力,而在其他块中使用窗口注意力,而非全局注意力。在每组transformer块后面加入一个卷积块,并利用残差连结将每组的结果前馈,卷积块等于组数,采用ResBottleneck。

2.4 Detail capture module

已经加入一个轻量级的细节捕捉模块,以有效的捕捉更精细的细节,该模块包括一个卷积流和一个简单的融合策略。由一些列的3x3conv组成,每一层包括一个卷积层,核大小为3,批归一化和relu,双线性插值。

2.5 Training scheme

ViT初始权重(DINO和MAE的预训练权重初始化ViTMatte-S和ViTMatte-B),并随机初始化额外部分,输入通道是4个,而不是3个,随机裁剪512x512,在两个V100上训练了100个epoch,ViTMatte-B的bs为32,ViTMatte-S的bs为20.

3.experiments

相关推荐
LaughingZhu1 小时前
Product Hunt 每日热榜 | 2026-02-14
数据库·人工智能·经验分享·神经网络·搜索引擎·chatgpt
大模型探员1 小时前
告别答非所问!深度解析文档切分如何决定RAG的搜索上限
人工智能
民乐团扒谱机1 小时前
【读论文】深度学习中的卷积算术指南 A guide to convolution arithmetic for deep learning
人工智能·深度学习·神经网络·机器学习·cnn·卷积神经网络·图像识别
byzh_rc1 小时前
[深度学习网络从入门到入土] 拓展 - Inception
网络·人工智能·深度学习
阿里巴巴淘系技术团队官网博客2 小时前
从应用架构的视角看退小宝AI助手落地现状
人工智能·架构
寻星探路2 小时前
【JVM 终极通关指南】万字长文从底层到实战全维度深度拆解 Java 虚拟机
java·开发语言·jvm·人工智能·python·算法·ai
Elastic 中国社区官方博客2 小时前
DevRel 通讯 — 2026 年 2 月
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·jina
一个天蝎座 白勺 程序猿2 小时前
飞算JavaAI:从情绪价值到代码革命,智能合并项目与定制化开发新范式
人工智能·ai·自动化·javaai
田里的水稻2 小时前
FA_融合和滤波(FF)-联邦滤波(FKF)
人工智能·算法·数学建模·机器人·自动驾驶
摘星编程2 小时前
解析CANN ops-transformer的FlashAttention算子:注意力机制的内存优化
人工智能·深度学习·transformer