ViTMatte:Boosting image matting with pretrained plain vision transformers

自sora之后,我也要多思考,transformer的scaling law在各个子领域中是不是真的会产生智能,conv的叠加从resnet之后就讨论过,宽或者深都没有办法做到极限,大概sam这种思路是最好的实证。

1.introduction

引入了ViT adaptation策略和detail capture module。

2.Methodology

2.2 Overall architecture

给定一个RGB图像HXWX3以及其对应的trimap HXWX1,按通道连接它们并输入到ViTMatte中,ViT作为基础特征提取器,生成一个stride=16的单个特征图,detail capture模块由一系列卷积层组成,用于捕捉和融合图像matting中的详细信息,简单的在不同尺度上采样和融合特征,以预测最终的alpha。

2.3 Vision transformer adaptation

将普通VIT中的block分层m组G,每个组中包含n个transformer块,对于G中的块,我们仅在最后一个块bn中应用全局注意力,而在其他块中使用窗口注意力,而非全局注意力。在每组transformer块后面加入一个卷积块,并利用残差连结将每组的结果前馈,卷积块等于组数,采用ResBottleneck。

2.4 Detail capture module

已经加入一个轻量级的细节捕捉模块,以有效的捕捉更精细的细节,该模块包括一个卷积流和一个简单的融合策略。由一些列的3x3conv组成,每一层包括一个卷积层,核大小为3,批归一化和relu,双线性插值。

2.5 Training scheme

ViT初始权重(DINO和MAE的预训练权重初始化ViTMatte-S和ViTMatte-B),并随机初始化额外部分,输入通道是4个,而不是3个,随机裁剪512x512,在两个V100上训练了100个epoch,ViTMatte-B的bs为32,ViTMatte-S的bs为20.

3.experiments

相关推荐
sali-tec4 小时前
C# 基于halcon的视觉工作流-章66 四目匹配
开发语言·人工智能·数码相机·算法·计算机视觉·c#
这张生成的图像能检测吗4 小时前
(论文速读)ParaDiffusion:基于信息扩散模型的段落到图像生成
人工智能·机器学习·计算机视觉·文生图·图像生成·视觉语言模型
新程记4 小时前
2025年,上海CAIE认证报考指南:把握AI机遇的实用起点
人工智能·百度
unicrom_深圳市由你创科技4 小时前
汽修AI智能体V1.0——从模型微调到应用部署
人工智能
路边草随风4 小时前
milvus向量数据库使用尝试
人工智能·python·milvus
irizhao4 小时前
基于深度学习的智能停车场系统设计与实现
人工智能·深度学习
九河云5 小时前
华为云 ECS 弹性伸缩技术:应对业务峰值的算力动态调度策略
大数据·服务器·人工智能·物联网·华为云
IT空门:门主6 小时前
Spring AI的教程,持续更新......
java·人工智能·spring·spring ai
美狐美颜SDK开放平台6 小时前
美颜sdk是什么?如何将美颜SDK接入安卓/iOS直播平台?
人工智能·美颜sdk·直播美颜sdk·美颜api·美狐美颜sdk
AI营销资讯站6 小时前
AI营销内容生产:哪些平台支持全球多语言内容同步生产?
大数据·人工智能