ViTMatte:Boosting image matting with pretrained plain vision transformers

自sora之后,我也要多思考,transformer的scaling law在各个子领域中是不是真的会产生智能,conv的叠加从resnet之后就讨论过,宽或者深都没有办法做到极限,大概sam这种思路是最好的实证。

1.introduction

引入了ViT adaptation策略和detail capture module。

2.Methodology

2.2 Overall architecture

给定一个RGB图像HXWX3以及其对应的trimap HXWX1,按通道连接它们并输入到ViTMatte中,ViT作为基础特征提取器,生成一个stride=16的单个特征图,detail capture模块由一系列卷积层组成,用于捕捉和融合图像matting中的详细信息,简单的在不同尺度上采样和融合特征,以预测最终的alpha。

2.3 Vision transformer adaptation

将普通VIT中的block分层m组G,每个组中包含n个transformer块,对于G中的块,我们仅在最后一个块bn中应用全局注意力,而在其他块中使用窗口注意力,而非全局注意力。在每组transformer块后面加入一个卷积块,并利用残差连结将每组的结果前馈,卷积块等于组数,采用ResBottleneck。

2.4 Detail capture module

已经加入一个轻量级的细节捕捉模块,以有效的捕捉更精细的细节,该模块包括一个卷积流和一个简单的融合策略。由一些列的3x3conv组成,每一层包括一个卷积层,核大小为3,批归一化和relu,双线性插值。

2.5 Training scheme

ViT初始权重(DINO和MAE的预训练权重初始化ViTMatte-S和ViTMatte-B),并随机初始化额外部分,输入通道是4个,而不是3个,随机裁剪512x512,在两个V100上训练了100个epoch,ViTMatte-B的bs为32,ViTMatte-S的bs为20.

3.experiments

相关推荐
HPC_fac1305206781634 分钟前
以科学计算为切入点:剖析英伟达服务器过热难题
服务器·人工智能·深度学习·机器学习·计算机视觉·数据挖掘·gpu算力
小陈phd3 小时前
OpenCV从入门到精通实战(九)——基于dlib的疲劳监测 ear计算
人工智能·opencv·计算机视觉
Guofu_Liao4 小时前
大语言模型---LoRA简介;LoRA的优势;LoRA训练步骤;总结
人工智能·语言模型·自然语言处理·矩阵·llama
ZHOU_WUYI8 小时前
3.langchain中的prompt模板 (few shot examples in chat models)
人工智能·langchain·prompt
如若1238 小时前
主要用于图像的颜色提取、替换以及区域修改
人工智能·opencv·计算机视觉
老艾的AI世界9 小时前
AI翻唱神器,一键用你喜欢的歌手翻唱他人的曲目(附下载链接)
人工智能·深度学习·神经网络·机器学习·ai·ai翻唱·ai唱歌·ai歌曲
DK221519 小时前
机器学习系列----关联分析
人工智能·机器学习
Robot2519 小时前
Figure 02迎重大升级!!人形机器人独角兽[Figure AI]商业化加速
人工智能·机器人·微信公众平台
浊酒南街9 小时前
Statsmodels之OLS回归
人工智能·数据挖掘·回归
畅联云平台10 小时前
美畅物联丨智能分析,安全管控:视频汇聚平台助力智慧工地建设
人工智能·物联网