基于textdistance计算文本相似度

textdistance是Python的第三方库,用于计算文本之间的相似度或距离。它提供了30+个算法,简单易用。

安装

bash 复制代码
pip install textdistance

# 使用扩展库,提高性能
pip install "textdistance[extras]"

使用

python 复制代码
import textdistance

# 计算编辑距离
distance = textdistance.levenshtein.distance("如何更换花呗绑定银行卡", "花呗更改绑定银行卡")
print("编辑距离:", distance)

# 计算余弦相似度
similarity = textdistance.cosine.similarity("如何更换花呗绑定银行卡", "花呗更改绑定银行卡")
print("余弦相似度:", similarity)

# 计算 Jaccard 系数
coefficient = textdistance.jaccard("如何更换花呗绑定银行卡", "花呗更改绑定银行卡")
print("Jaccard 系数:", coefficient)

# 计算 Hamming 距离
distance = textdistance.hamming.distance("如何更换花呗绑定银行卡", "花呗更改绑定银行卡")
print("Hamming 距离:", distance)

结果:

复制代码
编辑距离: 5
余弦相似度: 0.8040302522073697
Jaccard 系数: 0.6666666666666666
Hamming 距离: 10

应用场景

拼写检查

在拼写检查中,可以使用编辑距离等算法来比较单词之间的相似度,从而找出可能的正确拼写。

python 复制代码
import textdistance

# 拼写检查
word = "发愤图强"
possible_spellings = ["发奋图强", "发奋图", "发愤图"]

for spelling in possible_spellings:
    distance = textdistance.levenshtein.distance(word, spelling)
    if distance <= 1:
        print("可能的正确拼写:", spelling)

结果

复制代码
可能的正确拼写: 发奋图强
可能的正确拼写: 发愤图

文档相似度计算

在信息检索和推荐系统中,经常需要计算文档之间的相似度,以便为用户提供相关的信息或推荐内容。

python 复制代码
import textdistance

# 文档相似度计算
doc1 = "Python is a programming language"
doc2 = "Python is used for web development"
doc3 = "Java is a programming language"

similarity1 = textdistance.cosine.similarity(doc1, doc2)
similarity2 = textdistance.cosine.similarity(doc1, doc3)

print("文档1和文档2的余弦相似度:", similarity1)
print("文档1和文档3的余弦相似度:", similarity2)
复制代码
文档1和文档2的余弦相似度: 0.6063390625908325
文档1和文档3的余弦相似度: 0.8391463916782737

数据清洗

在数据清洗过程中,可以使用 Hamming 距离等算法来比较数据条目之间的相似度,从而找出相似但不完全相同的数据。

python 复制代码
import textdistance

# 数据清洗
data = ["配偶", "原配", "元配", "老婆", "夫人", "爱人"]

for i in range(len(data)):
    for j in range(i+1, len(data)):
        distance = textdistance.hamming.distance(data[i], data[j])
        if distance <= 1:
            print("相似但不完全相同的数据:", data[i], data[j])

结果:

复制代码
相似但不完全相同的数据: 原配 元配
相似但不完全相同的数据: 夫人 爱人
python 复制代码
import textdistance

# 姓名匹配
name1 = "李建国"
name2 = "张建国"
name3 = "王爱国"

coefficient1 = textdistance.jaccard.normalized_similarity(name1, name2)
coefficient2 = textdistance.jaccard.normalized_similarity(name1, name3)

print("姓名1和姓名2的Jaccard系数:", coefficient1)
print("姓名1和姓名3的Jaccard系数:", coefficient2)

结果

python 复制代码
姓名1和姓名2的Jaccard系数: 0.5
姓名1和姓名3的Jaccard系数: 0.19999999999999996

textdistance 提供了丰富多样的文本比较算法和距离度量方法,可以满足各种不同的文本比较需求。

相关链接

源码

相关推荐
ValhallaCoder1 小时前
hot100-二叉树I
数据结构·python·算法·二叉树
猫头虎2 小时前
如何排查并解决项目启动时报错Error encountered while processing: java.io.IOException: closed 的问题
java·开发语言·jvm·spring boot·python·开源·maven
八零后琐话2 小时前
干货:程序员必备性能分析工具——Arthas火焰图
开发语言·python
青春不朽5123 小时前
Scrapy框架入门指南
python·scrapy
MZ_ZXD0014 小时前
springboot旅游信息管理系统-计算机毕业设计源码21675
java·c++·vue.js·spring boot·python·django·php
全栈老石4 小时前
Python 异步生存手册:给被 JS async/await 宠坏的全栈工程师
后端·python
梨落秋霜5 小时前
Python入门篇【模块/包】
python
阔皮大师6 小时前
INote轻量文本编辑器
java·javascript·python·c#
小法师爱分享6 小时前
StickyNotes,简单便签超实用
java·python