简单介绍SpeechPrompt、SpeechPrompt V2、SpeechGen

主要介绍SpeechPrompt、SpeechPrompt V2、SpeechGen

SpeechPrompt

模型结构和原理(语音到符号)

  1. 整体思路:音频特征提取(HuBert/CPC),离散--》deep prompt + speechLM(GSLM)---》概率映射-->目标
  2. Verbalizer选择根据概率统计,优于随机
  3. deep prompt优于input prompt
  4. 参数量:uLM 参数量为151M;prompt参数和长度有关系,分类任务长度较短,参数少,生成任务长度长,参数量大,例如l=180时,参数为4.5M
  5. 音频特征提取:HuBert效果好于CPC

适合任务

适合任务:语音分类任务,序列生成任务均可,但不能生成音频(效果不太好)。比如关键词识别,意图分类,ASR,槽位填充。但实际上,针对ASR、SF效果并不好,原因是GSLM有限,不适合这种输出长度很长的任务,语音分类任务又些效果还可以。

SpeechPrompt V2

模型结构和原理(语音到符号)

  1. 整体思路:音频特征提取(HuBert),离散--》deep prompt + speechLM(GSLM/pGSLM)---》线性映射-->目标 SpeechPrompt
  2. V2的加强版,主要改进有两点。第一:speech LM可以选择GSLM和它的升级版pGSLM,多了韵律信息;第二:概率映射改为了线性学习映射。另外呢,这篇文章主要关注分类任务,多了更多的分类任务的数据、训练和试验。
  3. 参数量:uLM 参数量为151M;prompt参数和长度有关系,分类任务长度较短,参数少,例如l=5时,参数为0.128M

适合任务

适合任务:语音分类任务。比如语音命令词识别、意图分类、语言识别、机器人声识别、情感识别、口音识别、讽刺识别、性别识别、VAD。但并不是在所有任务上,提出的模型效果就好,在有些任务上比传统的finetune的好,有些持平,有些不如传统模型效果。

SpeechGen

模型结构和原理(语音到语音)

  1. 整体思路:音频特征提取(HuBert),离散--》deep prompt + speechLM(mBART)-->vocoder解码--〉语音
  2. mBART是encoder-decoder结构的,在使用prompt时encoder和decoder都添加;
  3. 训练参数只有prompt的参数
  4. 参数量:prompt参数l=200时,参数为10M

适合任务

适合任务:语音生成任务。比如语音翻译、语音修复、语音预测等。效果可能受限于speech LM。期待有更好的Speech LM,框架同样适用,效果会更好。现在这种离散化的方式对语音信息有损失。

相关推荐
海边夕阳20064 小时前
【每天一个AI小知识】:什么是生成对抗网络?
人工智能·经验分享·深度学习·神经网络·机器学习·生成对抗网络
Wise玩转AI4 小时前
Day 27|智能体的 UI 与用户交互层
人工智能·python·ui·ai·chatgpt·ai智能体
youcans_4 小时前
【youcans论文精读】VM-UNet:面向医学图像分割的视觉 Mamba UNet 架构
论文阅读·人工智能·计算机视觉·图像分割·状态空间模型
铮铭5 小时前
扩散模型简介:The Annotated Diffusion Model
人工智能·机器人·强化学习·世界模型
轻竹办公PPT5 小时前
轻竹论文:毕业论文AI写作教程
人工智能·ai·ai写作
呵呵哒( ̄▽ ̄)"5 小时前
专项智能练习(课程类型)
人工智能
2501_918126916 小时前
如何用ai把特定领域的生活成本归零
人工智能·生活·个人开发
Brianna Home6 小时前
[鸿蒙2025领航者闯关] 鸿蒙 6.0 星盾安全架构 + AI 防窥:金融级支付安全实战与深度踩坑实录
人工智能·安全·harmonyos·安全架构
飞哥数智坊6 小时前
V4/R4 没来,但 DeepSeek-V3.2 好像又便宜又好用?
人工智能·deepseek