简单介绍SpeechPrompt、SpeechPrompt V2、SpeechGen

主要介绍SpeechPrompt、SpeechPrompt V2、SpeechGen

SpeechPrompt

模型结构和原理(语音到符号)

  1. 整体思路:音频特征提取(HuBert/CPC),离散--》deep prompt + speechLM(GSLM)---》概率映射-->目标
  2. Verbalizer选择根据概率统计,优于随机
  3. deep prompt优于input prompt
  4. 参数量:uLM 参数量为151M;prompt参数和长度有关系,分类任务长度较短,参数少,生成任务长度长,参数量大,例如l=180时,参数为4.5M
  5. 音频特征提取:HuBert效果好于CPC

适合任务

适合任务:语音分类任务,序列生成任务均可,但不能生成音频(效果不太好)。比如关键词识别,意图分类,ASR,槽位填充。但实际上,针对ASR、SF效果并不好,原因是GSLM有限,不适合这种输出长度很长的任务,语音分类任务又些效果还可以。

SpeechPrompt V2

模型结构和原理(语音到符号)

  1. 整体思路:音频特征提取(HuBert),离散--》deep prompt + speechLM(GSLM/pGSLM)---》线性映射-->目标 SpeechPrompt
  2. V2的加强版,主要改进有两点。第一:speech LM可以选择GSLM和它的升级版pGSLM,多了韵律信息;第二:概率映射改为了线性学习映射。另外呢,这篇文章主要关注分类任务,多了更多的分类任务的数据、训练和试验。
  3. 参数量:uLM 参数量为151M;prompt参数和长度有关系,分类任务长度较短,参数少,例如l=5时,参数为0.128M

适合任务

适合任务:语音分类任务。比如语音命令词识别、意图分类、语言识别、机器人声识别、情感识别、口音识别、讽刺识别、性别识别、VAD。但并不是在所有任务上,提出的模型效果就好,在有些任务上比传统的finetune的好,有些持平,有些不如传统模型效果。

SpeechGen

模型结构和原理(语音到语音)

  1. 整体思路:音频特征提取(HuBert),离散--》deep prompt + speechLM(mBART)-->vocoder解码--〉语音
  2. mBART是encoder-decoder结构的,在使用prompt时encoder和decoder都添加;
  3. 训练参数只有prompt的参数
  4. 参数量:prompt参数l=200时,参数为10M

适合任务

适合任务:语音生成任务。比如语音翻译、语音修复、语音预测等。效果可能受限于speech LM。期待有更好的Speech LM,框架同样适用,效果会更好。现在这种离散化的方式对语音信息有损失。

相关推荐
阿坡RPA12 小时前
手搓MCP客户端&服务端:从零到实战极速了解MCP是什么?
人工智能·aigc
用户277844910499312 小时前
借助DeepSeek智能生成测试用例:从提示词到Excel表格的全流程实践
人工智能·python
机器之心12 小时前
刚刚,DeepSeek公布推理时Scaling新论文,R2要来了?
人工智能
算AI14 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
凯子坚持 c15 小时前
基于飞桨框架3.0本地DeepSeek-R1蒸馏版部署实战
人工智能·paddlepaddle
你觉得20515 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
8K超高清15 小时前
中国8K摄像机:科技赋能文化传承新图景
大数据·人工智能·科技·物联网·智能硬件
hyshhhh16 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
薛定谔的猫-菜鸟程序员16 小时前
零基础玩转深度神经网络大模型:从Hello World到AI炼金术-详解版(含:Conda 全面使用指南)
人工智能·神经网络·dnn
币之互联万物16 小时前
2025 AI智能数字农业研讨会在苏州启幕,科技助农与数据兴业成焦点
人工智能·科技