Pytorch线性回归实现(原理)

设置梯度

直接在tensor中设置 requires_grad=True,每次操作这个数的时候,就会保存每一步的数据。也就是保存了梯度相关的数据。

python 复制代码
import torch
x = torch.ones(2, 2, requires_grad=True)  #初始化参数x并设置requires_grad=True用来追踪其计算历史
print(x)
#tensor([[1., 1.],
#        [1., 1.]], requires_grad=True)

y = x+2
print(y)
#tensor([[3., 3.],
#        [3., 3.]], grad_fn=<AddBackward0>)

z = y*y*3  #平方x3
print(x)
#tensor([[27., 27.],
#        [27., 27.]], grad_fn=<MulBackward0>) 

out = z.mean() #求均值
print(out)
#tensor(27., grad_fn=<MeanBackward0>)

图1.1

想要修改的话:x.requires_grad_(True),就把x变为可以追踪(中间计算结果都保存)的数了。

不想修改了

python 复制代码
with torch.no_gard():
    c = (a * a).sum()  #tensor(151.6830),此时c没有gard_fn

把内容放在torch.no_gard():下就可以了

梯度计算

计算梯度 :直接调用**.backward()**就行。

例如上面图1.1,out.backward()就行

获取梯度 :调用那个数**.gard**

注意:如果.grad在循环中,每次都会和之前的.grad叠加。

所以每次反向传播之后,都需要把梯度变为0再进行操作。


使用.data获取里面的数据。相当于直接拷贝了一份数据,而不改变原数据的内容。

相关推荐
魔力之心20 分钟前
TensorFlow2 study notes[1]
人工智能·python·tensorflow
猎嘤一号1 小时前
Windows11桌面解锁守护脚本
开发语言·python·opencv
蓝婷儿2 小时前
Python 数据建模与分析项目实战预备 Day 2 - 数据构建与字段解析(模拟简历结构化数据)
开发语言·python·机器学习
青衫客362 小时前
浅谈 Python 中的 yield——yield的返回值与send()的关系
开发语言·python
测试老哥3 小时前
Python+Selenium实现自动化测试
自动化测试·软件测试·python·selenium·测试工具·职场和发展·测试用例
Dxy12393102167 小时前
Python PDFplumber详解:从入门到精通的PDF处理指南
开发语言·python·pdf
在努力的韩小豪8 小时前
如何从0开始构建自己的第一个AI应用?(Prompt工程、Agent自定义、Tuning)
人工智能·python·llm·prompt·agent·ai应用·mcp
Otaku love travel10 小时前
实施运维文档
运维·windows·python
测试老哥10 小时前
软件测试之单元测试
自动化测试·软件测试·python·测试工具·职场和发展·单元测试·测试用例
presenttttt11 小时前
用Python和OpenCV从零搭建一个完整的双目视觉系统(六 最终篇)
开发语言·python·opencv·计算机视觉