多轨迹建模方法的介绍与实操-基于R语言

本文介绍了多轨迹建模方法(Group-Based Multivariate Trajectory Modeling),这是一种扩展了单指标组基轨迹建模的技术,用于分析多个疾病生物标志物或临床重要因素的联合轨迹,以更好地理解和追踪疾病进程、行为或健康状态的变化。多轨迹建模利用有限混合模型,识别出遵循相似多指标轨迹的个体群体。这种方法克服了传统统计分析在处理多变量纵向数据时的局限性,允许同时分析多个相关指标。通过两个示例展示了该模型的实施过程和应用。

1. 引言

  • 现有统计方法通常未能充分利用多变量纵向数据中的信息来研究疾病进展的多个指标。

  • 多轨迹建模旨在通过同时分析多个指标的轨迹,提高对疾病发展等的理解。

2. 多轨迹建模方法

  • 基于有限混合模型,多轨迹建模扩展了单指标的组基轨迹建模。

  • 每个轨迹群由多个指标的轨迹定义,而不是仅一个指标。

3. 确定组数

  • 选择合适的组数是关键,需要结合统计标准和实质性的解释。

  • 不能仅依赖于机械的拟合统计量,模型选择应考虑其实质性意义。

【确定多轨迹模型中的最佳组数通常涉及统计标准,但同时也需要考虑其他因素。这些因素可能包括临床相关性、模型的解释能力和复杂性之间的平衡。选择最佳组数时,需要确保模型能够清晰、简洁地代表临床相关的轨迹模式,同时避免过度拟合数据,即创建过多的组以至于每个组包含的数据量过少或模式过于特定。此外,模型的实用性也是一个重要因素,理想的模型应该易于理解和应用到实际的临床决策中。】

4. 实现方法

4.1 准备阶段

R 复制代码
install.packages("gbmt")
library(gbmt)
data(agrisus2)

4.2 分析阶段

  1. 进行gbmt分析,以每个国家为一个个体,ng=创建的组数,d=表示组轨迹的多项式次数。默认值为 2,scaling=归一化方法,应表示为:0(无归一化)、1(居中)、2(标准化)、3(与平均值的比率)和4(与平均值的对数比率)。默认值为 2(标准化)
R 复制代码
varNames <- c("TFP_2005", "NetCapital_GVA", "Income_rur", "Unempl_rur", "GHG_UAA", "GNB_N_UAA") # 定义6 个自变量
m3_2 <- gbmt(x.names=varNames, unit="Country", time="Year", d=2, ng=3, data=agrisus2, scaling=4)   # 分为3组
m3_2$assign.list
m3_2$fitted
summary(m3_2)
R 复制代码
m4_2 <- gbmt(x.names=varNames, unit="Country", time="Year", d=2, ng=4, data=agrisus2, scaling=4) # 分为4组

rbind(m3_2$ic, m4_2$ic)

选择多少组别数量?

通常在使用`gbmt`这样的方法时,研究人员可能会基于理论背景、数据的聚类结构或者通过比较不同组数(ng)的模型来决定。例如,他们可能从一个较小的组别数量开始(如3个组),然后逐渐增加组别,直到模型的复杂性与数据的解释能力达到平衡,或者模型的信息准则(如IC值)不再有显著改善。

在示例代码中,模型`m3_2`使用了3个组,而`m4_2`尝试了4个组,这表明可以通过比较不同组数模型的拟合情况来选择合适的组别数量。

相关推荐
AI极客菌29 分钟前
Controlnet作者新作IC-light V2:基于FLUX训练,支持处理风格化图像,细节远高于SD1.5。
人工智能·计算机视觉·ai作画·stable diffusion·aigc·flux·人工智能作画
阿_旭31 分钟前
一文读懂| 自注意力与交叉注意力机制在计算机视觉中作用与基本原理
人工智能·深度学习·计算机视觉·cross-attention·self-attention
王哈哈^_^37 分钟前
【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!
前端·人工智能·深度学习·yolo·目标检测·计算机视觉·pyqt
Power20246661 小时前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp
数据猎手小k2 小时前
AIDOVECL数据集:包含超过15000张AI生成的车辆图像数据集,目的解决旨在解决眼水平分类和定位问题。
人工智能·分类·数据挖掘
好奇龙猫2 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
沉下心来学鲁班2 小时前
复现LLM:带你从零认识语言模型
人工智能·语言模型
数据猎手小k2 小时前
AndroidLab:一个系统化的Android代理框架,包含操作环境和可复现的基准测试,支持大型语言模型和多模态模型。
android·人工智能·机器学习·语言模型
YRr YRr2 小时前
深度学习:循环神经网络(RNN)详解
人工智能·rnn·深度学习
sp_fyf_20242 小时前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-01
人工智能·深度学习·神经网络·算法·机器学习·语言模型·数据挖掘