ResNet的特点?BN层的目的?模型验证的时候可以用BN吗?

ResNet(残差神经网络)

残差思想:主要目的是为了解决深度神经网络训练过程中的梯度消失和梯度爆炸问题,同时帮助网络更好地学习到特征表示,突出微小的变化,提高网络的性能和泛化能力。从而突出微小的变化

可以被用来训练非常深的网络

亮点

超深的网络结构

提出residual模块

使用Batch Normalization加速训练(丢弃dropout)

Residual结构
  1. 将原本的输入和经过卷积后的输出相加,要注意主分支与shortcut的输出特征矩阵shape必须相同

  2. 残差结构分为好几种,一种为不改变矩阵的长和宽,只改变深度;另外一种为改变矩阵的长和宽,也改变深度。对于不改变矩阵长宽和深度的,只需要直接把输入和输出相加就可以,如果改变了,则输入也要经过卷积后为同样形状方可加减。

Batch Normalization(数据标准化)

BN层的目的是使我们的一批feature map满足均值为0,方差为1的分布规律,从而可以加速收敛

  • 原本我们在输入数据的时候,比如图片处理像素特征,我们会对他进行归一化,使其满足某一分布规律,但经过层层的卷积后,feature map就不一定满足某一分布规律了,而数据标准化(BN)层的目的就是使输入的一批(batch)数据的 feature map满足均值为0,方差为1的分布规律
  • 注意事项:
    1. 训练时候将traning参数设置为true,验证时将trainning参数设置为False,因为训练的时候要统计均值和方差,trainning的时候就要使用之前统计的均值和方差。均值和方差是在正向传播过程中统计得到, γ β在反向传播中统计得到
    2. batch size 尽可能设置大点,设置小后表现可能很糟糕,越大求的均值核方差越接近整个训练集的均值和方差。
    3. 建议将bn层放在卷积层和激活层之间,且卷积层不要使用偏置bias,因为没有用。
迁移学习
  1. 能够快速训练出一个理想结果
  2. 当数据集较小时也能训练出理想效果

注意: 使用别人预训练模型参数时,要注意别人的预处理方式。

ResNeXt

更新了block模块,

通过对卷积过程改进,减少了参数量。

相关推荐
lisw0534 分钟前
6G频段与5G频段有何不同?
人工智能·机器学习
枯木逢秋࿐4 小时前
卷积神经网络的认知
卷积神经网络
双翌视觉7 小时前
双翌全自动影像测量仪:以微米精度打造智能化制造
人工智能·机器学习·制造
编程小白_正在努力中7 小时前
神经网络深度解析:从神经元到深度学习的进化之路
人工智能·深度学习·神经网络·机器学习
我不是QI9 小时前
周志华《机器学习---西瓜书》 一
人工智能·python·机器学习·ai
H***99769 小时前
月之暗面公开强化学习训练加速方法:训练速度暴涨97%,长尾延迟狂降93%
人工智能·深度学习·机器学习
长桥夜波10 小时前
机器学习日报20
人工智能·机器学习
Ma04071316 小时前
【机器学习】监督学习、无监督学习、半监督学习、自监督学习、弱监督学习、强化学习
人工智能·学习·机器学习
周杰伦_Jay18 小时前
【 2025年必藏】8个开箱即用的优质开源智能体(Agent)项目
人工智能·机器学习·架构·开源
yLDeveloper1 天前
一只菜鸟学机器学习的日记:入门分布偏移
机器学习·dive into deep learning