ResNet的特点?BN层的目的?模型验证的时候可以用BN吗?

ResNet(残差神经网络)

残差思想:主要目的是为了解决深度神经网络训练过程中的梯度消失和梯度爆炸问题,同时帮助网络更好地学习到特征表示,突出微小的变化,提高网络的性能和泛化能力。从而突出微小的变化

可以被用来训练非常深的网络

亮点

超深的网络结构

提出residual模块

使用Batch Normalization加速训练(丢弃dropout)

Residual结构
  1. 将原本的输入和经过卷积后的输出相加,要注意主分支与shortcut的输出特征矩阵shape必须相同

  2. 残差结构分为好几种,一种为不改变矩阵的长和宽,只改变深度;另外一种为改变矩阵的长和宽,也改变深度。对于不改变矩阵长宽和深度的,只需要直接把输入和输出相加就可以,如果改变了,则输入也要经过卷积后为同样形状方可加减。

Batch Normalization(数据标准化)

BN层的目的是使我们的一批feature map满足均值为0,方差为1的分布规律,从而可以加速收敛

  • 原本我们在输入数据的时候,比如图片处理像素特征,我们会对他进行归一化,使其满足某一分布规律,但经过层层的卷积后,feature map就不一定满足某一分布规律了,而数据标准化(BN)层的目的就是使输入的一批(batch)数据的 feature map满足均值为0,方差为1的分布规律
  • 注意事项:
    1. 训练时候将traning参数设置为true,验证时将trainning参数设置为False,因为训练的时候要统计均值和方差,trainning的时候就要使用之前统计的均值和方差。均值和方差是在正向传播过程中统计得到, γ β在反向传播中统计得到
    2. batch size 尽可能设置大点,设置小后表现可能很糟糕,越大求的均值核方差越接近整个训练集的均值和方差。
    3. 建议将bn层放在卷积层和激活层之间,且卷积层不要使用偏置bias,因为没有用。
迁移学习
  1. 能够快速训练出一个理想结果
  2. 当数据集较小时也能训练出理想效果

注意: 使用别人预训练模型参数时,要注意别人的预处理方式。

ResNeXt

更新了block模块,

通过对卷积过程改进,减少了参数量。

相关推荐
Quintus五等升1 天前
深度学习④|分类任务—VGG13
人工智能·经验分享·深度学习·神经网络·学习·机器学习·分类
B站计算机毕业设计超人1 天前
计算机毕业设计Python知识图谱中华古诗词可视化 古诗词情感分析 古诗词智能问答系统 AI大模型自动写诗 大数据毕业设计(源码+LW文档+PPT+讲解)
大数据·人工智能·hadoop·python·机器学习·知识图谱·课程设计
cdut_suye1 天前
解锁函数的魔力:Python 中的多值传递、灵活参数与无名之美
java·数据库·c++·人工智能·python·机器学习·热榜
UR的出不克1 天前
基于机器学习的电力消耗预测系统实战
人工智能·机器学习
老鱼说AI1 天前
论文精读第七期:告别昂贵的人工标注!Math-Shepherd:如何用“零成本”自动化过程监督,让大模型数学能力暴涨?
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理·boosting
安特尼1 天前
X 推荐算法分析
算法·机器学习·推荐算法
UR的出不克1 天前
基于Stacking集成学习的乙型肝炎预测模型:从数据到部署的完整实践
人工智能·机器学习·集成学习
TonyLee0171 天前
半监督学习介绍
人工智能·python·深度学习·机器学习
hjs_deeplearning1 天前
文献阅读篇#11:自动驾驶中的基础模型:场景生成与场景分析综述(2)
人工智能·机器学习·自动驾驶
Ro Jace1 天前
On Periodic Pulse Interval Analysis with Outliers and Missing Observations
人工智能·机器学习