代码随想录算法训练营第day41|背包理论基础、416. 分割等和子集

目录

a.背包理论基础------01背包

1.二维数组的01背包表示

2.一维滚动数组表示

[b. 416. 分割等和子集 - 力扣(LeetCode)](#b. 416. 分割等和子集 - 力扣(LeetCode))


a.背包理论基础------01背包

背包问题分类:

对于面试的话,其实掌握01背包,和完全背包,就够用了,最多可以再来一个多重背包。

而完全背包又是也是01背包稍作变化而来,即:完全背包的物品数量是无限的。

所以背包问题的理论基础重中之重是01背包

01背包的特点是 有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

对于背包问题的动态规划问题,一般有一维滚动数组和二维数组两种表示方式,对于新手来说二维数组表示可能更直观一些,这里先介绍二维数组的表示:

1.二维数组的01背包表示

  • 动态规划五部曲:

1.确定dp数组及下标含义

dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少

2.确定递推公式

dp[i][j]的含义:从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。

那么可以有两个方向推出来dp[i][j]:

(1)不选择第i个物品:则此时背包容量和最大价值都不更新;dp[i][j]由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j];

(2)选择第i个物品放入背包,则此时背包容量减少,最大价值增加;dp[i][j]由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值

所以递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

3.dp数组如何初始化

当背包容量为零时,装不进任何物品,所以 dp[i][0]=0;当容量为j,物品编号为0时,

dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。

那么很明显当 j < weight[0]的时候,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。

当j >= weight[0]时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品。故初始化:

cpp 复制代码
for(int j=0;j<weight[0];j++{
    dp[0][j]=0;
}

for(int j=weight[0]; j<bagweight;j++){
    dp[0][j]=value[0];
}

此时dp数组初始化情况如图所示:

dp[0][j] 和 dp[i][0] 都已经初始化了,那么其他下标应该初始化多少呢?

其实从递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出dp[i][j] 是由左上方数值推导出来了,那么 其他下标初始为什么数值都可以,因为都会被覆盖。

只不过一开始就统一把dp数组统一初始为0,更方便一些。

4.确定遍历顺序

从递推公式可以看出,有两个遍历的维度:物品与背包重量;那么问题来了,先遍历 物品还是先遍历背包重量呢?其实都可以!! 但是先遍历物品更好理解

5.举例推导dp数组

来看一下对应的dp数组的数值,如图:

最终结果就是dp[2][4]。

cpp 复制代码
//二维dp数组实现
#include <bits/stdc++.h>
using namespace std;

int n, bagweight;// bagweight代表行李箱空间
void solve() {
    vector<int> weight(n, 0); // 存储每件物品所占空间
    vector<int> value(n, 0);  // 存储每件物品价值
    for(int i = 0; i < n; ++i) {
        cin >> weight[i];
    }
    for(int j = 0; j < n; ++j) {
        cin >> value[j];
    }
    // dp数组, dp[i][j]代表行李箱空间为j的情况下,从下标为[0, i]的物品里面任意取,能达到的最大价值
    vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0));

    // 初始化, 因为需要用到dp[i - 1]的值
    // j < weight[0]已在上方被初始化为0
    // j >= weight[0]的值就初始化为value[0]
    for (int j = weight[0]; j <= bagweight; j++) {
        dp[0][j] = value[0];
    }

    for(int i = 1; i < weight.size(); i++) { // 遍历科研物品
        for(int j = 0; j <= bagweight; j++) { // 遍历行李箱容量
            // 如果装不下这个物品,那么就继承dp[i - 1][j]的值
            if (j < weight[i]) dp[i][j] = dp[i - 1][j];
            // 如果能装下,就将值更新为 不装这个物品的最大值 和 装这个物品的最大值 中的 最大值
            // 装这个物品的最大值由容量为j - weight[i]的包任意放入序号为[0, i - 1]的最大值 + 该物品的价值构成
            else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
        }
    }
    cout << dp[weight.size() - 1][bagweight] << endl;
}

int main() {
    while(cin >> n >> bagweight) {
        solve();
    }
    return 0;
}

2.一维滚动数组表示

在使用二维数组的时候,递推公式:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

其实可以发现如果把dp[i - 1]那一层拷贝到dp[i]上,表达式完全可以是:dp[i][j] = max(dp[i][j], dp[i][j - weight[i]] + value[i]);

与其把dp[i - 1]这一层拷贝到dp[i]上,不如只用一个一维数组了,只用dp[j](一维数组,也可以理解是一个滚动数组)。

这就是滚动数组的由来,需要满足的条件是上一层可以重复利用,直接拷贝到当前层。

规五部曲分析如下:

1.确定dp数组的定义

在一维dp数组中,dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。

2.一维dp数组的递推公式

dp[j]为 容量为j的背包所背的最大价值,那么如何推导dp[j]呢?

dp[j]可以通过dp[j - weight[i]]推导出来,dp[j - weight[i]]表示容量为j - weight[i]的背包所背的最大价值。dp[j - weight[i]] + value[i] 表示 容量为 j - 物品i重量 的背包 加上 物品i的价值。(也就是容量为j的背包,放入物品i了之后的价值即:dp[j])

此时dp[j]有两个选择,一个是取自己dp[j] 相当于 二维dp数组中的dp[i-1][j],即不放物品i,一个是取dp[j - weight[i]] + value[i],即放物品i,指定是取最大的,毕竟是求最大价值,

所以递归公式为:

dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

3.一维dp数组如何初始化

dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j],那么dp[0]就应该是0,因为背包容量为0所背的物品的最大价值就是0。

那么dp数组除了下标0的位置,初始为0,其他下标应该初始化多少呢?看一下递归公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]); dp数组在推导的时候一定是取价值最大的数,如果题目给的价值都是正整数那么非0下标都初始化为0就可以了。

4.一维dp数组遍历顺序

二维dp遍历的时候,背包容量是从小到大,而一维dp遍历的时候,背包是从大到小。

为什么呢?倒序遍历是为了保证物品i只被放入一次!。但如果一旦正序遍历了,那么物品0就会被重复加入多次!举一个例子:物品0的重量weight[0] = 1,价值value[0] = 15, 如果正序遍历

dp[1] = dp[1 - weight[0]] + value[0] = 15

dp[2] = dp[2 - weight[0]] + value[0] = 30

此时dp[2]就已经是30了,意味着物品0,被放入了两次,所以不能正序遍历。

为什么倒序遍历,就可以保证物品只放入一次呢?

倒序就是先算dp[2]

dp[2] = dp[2 - weight[0]] + value[0] = 15 (dp数组已经都初始化为0)

dp[1] = dp[1 - weight[0]] + value[0] = 15

所以从后往前循环,每次取得状态不会和之前取得状态重合,这样每种物品就只取一次了。

那么问题又来了,为什么二维dp数组遍历的时候不用倒序呢?

因为对于二维dp,dp[i][j]都是通过上一层即dp[i - 1][j]计算而来,本层的dp[i][j]并不会被覆盖!

5.举例推导dp数组

一维dp,分别用物品0,物品1,物品2 来遍历背包,最终得到结果如下:

// 一维dp数组实现
#include <iostream>
#include <vector>
using namespace std;

int main() {
    // 读取 M 和 N
    int M, N;
    cin >> M >> N;

    vector<int> costs(M);
    vector<int> values(M);

    for (int i = 0; i < M; i++) {
        cin >> costs[i];
    }
    for (int j = 0; j < M; j++) {
        cin >> values[j];
    }

    // 创建一个动态规划数组dp,初始值为0
    vector<int> dp(N + 1, 0);

    // 外层循环遍历每个类型的研究材料
    for (int i = 0; i < M; ++i) {
        // 内层循环从 N 空间逐渐减少到当前研究材料所占空间
        for (int j = N; j >= costs[i]; --j) {
            // 考虑当前研究材料选择和不选择的情况,选择最大值
            dp[j] = max(dp[j], dp[j - costs[i]] + values[i]);
        }
    }

    // 输出dp[N],即在给定 N 行李空间可以携带的研究材料最大价值
    cout << dp[N] << endl;

    return 0;
}

b. 416. 分割等和子集 - 力扣(LeetCode)

给你一个 只包含正整数非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

示例 1:

复制代码
输入:nums = [1,5,11,5]
输出:true
解释:数组可以分割成 [1, 5, 5] 和 [11] 。

示例 2:

复制代码
输入:nums = [1,2,3,5]
输出:false
解释:数组不能分割成两个元素和相等的子集。

思路:

  • 背包的体积为sum / 2
  • 背包要放入的商品(集合里的元素)重量为 元素的数值,价值也为元素的数值
  • 背包如果正好装满,说明找到了总和为 sum / 2 的子集。
  • 背包中每一个元素是不可重复放入。

以上分析完,我们就可以套用01背包,来解决这个问题了。

01背包中,dp[j] 表示: 容量为j的背包,所背的物品价值最大可以为dp[j]。

本题中每一个元素的数值既是重量,也是价值。

套到本题,dp[j]表示 背包总容量(所能装的总重量)是j,放进物品后,背的最大重量为dp[j]

那么如果背包容量为target, dp[target]就是装满 背包之后的重量,所以 当 dp[target] == target 的时候,背包就装满了。

cpp 复制代码
class Solution {
public:
    bool canPartition(vector<int>& nums) {
        int sum=0;
        for(int i=0;i<nums.size();i++){
            sum+=nums[i];
        }
        if(sum%2==1) return false;

        int target =sum/2;
        vector<int>dp(10001,0);
        for(int i=0;i<nums.size();i++){
            for(int j=target;j>=nums[i];j--){
                dp[j]=max(dp[j], dp[j-nums[i]]+nums[i]);
                // cout<<"dp["<<j<<"]="<<dp[j]<<endl;
            }
        }
        if(dp[target]==target)return true;
        return false;
    }
};

参考:代码随想录 (programmercarl.com)

相关推荐
lucy153027510792 分钟前
【青牛科技】GC5931:工业风扇驱动芯片的卓越替代者
人工智能·科技·单片机·嵌入式硬件·算法·机器学习
杜杜的man18 分钟前
【go从零单排】迭代器(Iterators)
开发语言·算法·golang
小沈熬夜秃头中୧⍤⃝35 分钟前
【贪心算法】No.1---贪心算法(1)
算法·贪心算法
木向1 小时前
leetcode92:反转链表||
数据结构·c++·算法·leetcode·链表
阿阿越1 小时前
算法每日练 -- 双指针篇(持续更新中)
数据结构·c++·算法
skaiuijing1 小时前
Sparrow系列拓展篇:对调度层进行抽象并引入IPC机制信号量
c语言·算法·操作系统·调度算法·操作系统内核
Star Patrick2 小时前
算法训练(leetcode)二刷第十九天 | *39. 组合总和、*40. 组合总和 II、*131. 分割回文串
python·算法·leetcode
武子康3 小时前
大数据-214 数据挖掘 机器学习理论 - KMeans Python 实现 算法验证 sklearn n_clusters labels
大数据·人工智能·python·深度学习·算法·机器学习·数据挖掘
pianmian18 小时前
python数据结构基础(7)
数据结构·算法
好奇龙猫10 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法