七、门控循环单元语言模型(GRU)

门控循环单元(Gated Recurrent Unit,GRU)是 LSTM 的一个稍微简化的变体,通常能够提供同等的效果,并且计算训练的速度更快。

门控循环单元原理图:参考门控循环单元

原理图中各个图形含义:

  • X(t):表示当前时刻输入的信息(假设输入的样本个数为 n,输入个数为 d)
  • H(t-1):表示上一时刻的隐藏状态。隐藏状态充当了神经网络的记忆,包含之前节点数据信息的综合(假设上一个时间步的隐状态的单元个数为 h)
  • H(t):表示传递到下一时刻的隐藏状态。
  • H'(t):表示候选隐藏状态(candidate hidden state)。
  • R(t):表示重置门(reset gate),允许我们控制"可能还想记住"的过去状态的数量。
  • Z(t):表示更新门(update gate),允许我们控制新状态中有多少个是旧状态的副本。
  • σ:激活函数 sigmoid,可以将数据变为 (0, 1) 范围的数值。
  • tanh:激活函数 tanh,可以将数据变为 (-1, 1) 范围的数值。
  • W(xr) 和 W(xz) 是维度为 d×h 的权重参数,W(hr) 和 W(hz) 是维度为 h×h 的是权重参数,W(xh) 是维度为 d×h 的权重参数, W(hh) 是维度为 h×h 的是权重参数
  • b(r)、b(z)、b(h) 是维度为 1×h 的偏置参数。

重置门和更新门的计算公式如下:

候选隐状态的计算公式如下:

下一时刻的隐藏状态公式如下:

  • 重置门有助于捕获序列中的短期依赖关系;

  • 更新门有助于捕获序列中的长期依赖关系。

参考一文人人都能看懂的GRU

相关推荐
大模型任我行1 小时前
阿里:揭示RLVR训练不稳定性根源
人工智能·语言模型·自然语言处理·论文笔记
沃达德软件5 小时前
视频增强技术解析
人工智能·目标检测·机器学习·计算机视觉·超分辨率重建
魔乐社区5 小时前
GLM-5上线魔乐社区,基于昇腾的模型推理+训练部署教程请查收!
人工智能·开源·大模型
geneculture6 小时前
化繁为简且以简驭繁:唯文论英汉对照哲学术语49个主义/论
人工智能·融智学的重要应用·哲学与科学统一性·信息融智学·融智时代(杂志)
睡醒了叭6 小时前
coze-工作流-http请求
人工智能·aigc
twilight_4697 小时前
机器学习与模式识别——机器学习中的搜索算法
人工智能·python·机器学习
冰西瓜6007 小时前
深度学习的数学原理(十)—— 权重如何自发分工
人工智能·深度学习·计算机视觉
niuniudengdeng7 小时前
基于时序上下文编码的端到端无文本依赖语音分词模型
人工智能·数学·算法·概率论
Soonyang Zhang8 小时前
flashinfer attention kernel分析
人工智能·算子·推理框架
林籁泉韵78 小时前
2026年GEO服务商推荐:覆盖多场景适配,助力企业AI时代增长
人工智能