七、门控循环单元语言模型(GRU)

门控循环单元(Gated Recurrent Unit,GRU)是 LSTM 的一个稍微简化的变体,通常能够提供同等的效果,并且计算训练的速度更快。

门控循环单元原理图:参考门控循环单元

原理图中各个图形含义:

  • X(t):表示当前时刻输入的信息(假设输入的样本个数为 n,输入个数为 d)
  • H(t-1):表示上一时刻的隐藏状态。隐藏状态充当了神经网络的记忆,包含之前节点数据信息的综合(假设上一个时间步的隐状态的单元个数为 h)
  • H(t):表示传递到下一时刻的隐藏状态。
  • H'(t):表示候选隐藏状态(candidate hidden state)。
  • R(t):表示重置门(reset gate),允许我们控制"可能还想记住"的过去状态的数量。
  • Z(t):表示更新门(update gate),允许我们控制新状态中有多少个是旧状态的副本。
  • σ:激活函数 sigmoid,可以将数据变为 (0, 1) 范围的数值。
  • tanh:激活函数 tanh,可以将数据变为 (-1, 1) 范围的数值。
  • W(xr) 和 W(xz) 是维度为 d×h 的权重参数,W(hr) 和 W(hz) 是维度为 h×h 的是权重参数,W(xh) 是维度为 d×h 的权重参数, W(hh) 是维度为 h×h 的是权重参数
  • b(r)、b(z)、b(h) 是维度为 1×h 的偏置参数。

重置门和更新门的计算公式如下:

候选隐状态的计算公式如下:

下一时刻的隐藏状态公式如下:

  • 重置门有助于捕获序列中的短期依赖关系;

  • 更新门有助于捕获序列中的长期依赖关系。

参考一文人人都能看懂的GRU

相关推荐
艾思科蓝 AiScholar3 分钟前
【SPIE出版,见刊快速,EI检索稳定,浙江水利水电学院主办】2025年物理学与量子计算国际学术会议(ICPQC 2025)
图像处理·人工智能·信息可视化·自然语言处理·数据分析·力扣·量子计算
liruiqiang0516 分钟前
机器学习 - 衡量模型的特性
人工智能·机器学习
thinkMoreAndDoMore26 分钟前
深度学习(3)-TensorFlow入门(梯度带)
人工智能·深度学习·tensorflow
Dream251232 分钟前
【Transformer架构】
人工智能·深度学习·transformer
黎智程32 分钟前
AI助力小微企业技术开发规范化管理 | 杂谈
人工智能
web150854159351 小时前
超级详细Spring AI运用Ollama大模型
人工智能·windows·spring
啊哈哈哈哈哈啊哈哈1 小时前
J4打卡—— ResNet 和 DenseNet结合实现鸟类分类
人工智能·pytorch·分类
alden_ygq1 小时前
Ollama API 交互
人工智能·交互
小刘私坊1 小时前
机器梦境:AI如何在创意的狂野边疆上重塑艺术
人工智能
香橙薄荷心1 小时前
人工智能之自动驾驶技术体系
人工智能·机器学习·自动驾驶