七、门控循环单元语言模型(GRU)

门控循环单元(Gated Recurrent Unit,GRU)是 LSTM 的一个稍微简化的变体,通常能够提供同等的效果,并且计算训练的速度更快。

门控循环单元原理图:参考门控循环单元

原理图中各个图形含义:

  • X(t):表示当前时刻输入的信息(假设输入的样本个数为 n,输入个数为 d)
  • H(t-1):表示上一时刻的隐藏状态。隐藏状态充当了神经网络的记忆,包含之前节点数据信息的综合(假设上一个时间步的隐状态的单元个数为 h)
  • H(t):表示传递到下一时刻的隐藏状态。
  • H'(t):表示候选隐藏状态(candidate hidden state)。
  • R(t):表示重置门(reset gate),允许我们控制"可能还想记住"的过去状态的数量。
  • Z(t):表示更新门(update gate),允许我们控制新状态中有多少个是旧状态的副本。
  • σ:激活函数 sigmoid,可以将数据变为 (0, 1) 范围的数值。
  • tanh:激活函数 tanh,可以将数据变为 (-1, 1) 范围的数值。
  • W(xr) 和 W(xz) 是维度为 d×h 的权重参数,W(hr) 和 W(hz) 是维度为 h×h 的是权重参数,W(xh) 是维度为 d×h 的权重参数, W(hh) 是维度为 h×h 的是权重参数
  • b(r)、b(z)、b(h) 是维度为 1×h 的偏置参数。

重置门和更新门的计算公式如下:

候选隐状态的计算公式如下:

下一时刻的隐藏状态公式如下:

  • 重置门有助于捕获序列中的短期依赖关系;

  • 更新门有助于捕获序列中的长期依赖关系。

参考一文人人都能看懂的GRU

相关推荐
TMT星球20 分钟前
生数科技携手央视新闻《文博日历》,推动AI视频技术的创新应用
大数据·人工智能·科技
AI视觉网奇34 分钟前
图生3d算法学习笔记
人工智能
小锋学长生活大爆炸42 分钟前
【DGL系列】dgl中为graph指定CSR/COO/CSC矩阵格式
人工智能·pytorch·深度学习·图神经网络·gnn·dgl
佛州小李哥1 小时前
在亚马逊云科技上用AI提示词优化功能写出漂亮提示词(上)
人工智能·科技·ai·语言模型·云计算·aws·亚马逊云科技
鸭鸭鸭进京赶烤1 小时前
计算机工程:解锁未来科技之门!
人工智能·科技·opencv·ai·机器人·硬件工程·软件工程
ModelWhale1 小时前
十年筑梦,再创鲸彩!庆祝和鲸科技十周年
人工智能·科技
啊波次得饿佛哥1 小时前
9. 神经网络(一.神经元模型)
人工智能·深度学习·神经网络
互联网之声1 小时前
科家多功能美发梳:科技赋能,重塑秀发新生
人工智能·科技
Chatopera 研发团队1 小时前
Tensor 基本操作4 理解 indexing,加减乘除和 broadcasting 运算 | PyTorch 深度学习实战
人工智能·pytorch·深度学习
Bruce_Liuxiaowei2 小时前
AI时代的网络安全:传统技术的落寞与新机遇
人工智能·安全·web安全