【深度学习笔记】6_9 深度循环神经网络deep-rnn

注:本文为《动手学深度学习》开源内容,部分标注了个人理解,仅为个人学习记录,无抄袭搬运意图

6.9 深度循环神经网络

本章到目前为止介绍的循环神经网络只有一个单向的隐藏层,在深度学习应用里,我们通常会用到含有多个隐藏层的循环神经网络,也称作深度循环神经网络。图6.11演示了一个有 L L L个隐藏层的深度循环神经网络,每个隐藏状态不断传递至当前层的下一时间步和当前时间步的下一层。


图6.11 深度循环神经网络的架构

具体来说,在时间步 t t t里,设小批量输入 X t ∈ R n × d \boldsymbol{X}_t \in \mathbb{R}^{n \times d} Xt∈Rn×d(样本数为 n n n,输入个数为 d d d),第 ℓ \ell ℓ隐藏层( ℓ = 1 , ... , L \ell=1,\ldots,L ℓ=1,...,L)的隐藏状态为 H t ( ℓ ) ∈ R n × h \boldsymbol{H}_t^{(\ell)} \in \mathbb{R}^{n \times h} Ht(ℓ)∈Rn×h(隐藏单元个数为 h h h),输出层变量为 O t ∈ R n × q \boldsymbol{O}_t \in \mathbb{R}^{n \times q} Ot∈Rn×q(输出个数为 q q q),且隐藏层的激活函数为 ϕ \phi ϕ。第1隐藏层的隐藏状态和之前的计算一样:

H t ( 1 ) = ϕ ( X t W x h ( 1 ) + H t − 1 ( 1 ) W h h ( 1 ) + b h ( 1 ) ) , \boldsymbol{H}t^{(1)} = \phi(\boldsymbol{X}t \boldsymbol{W}{xh}^{(1)} + \boldsymbol{H}{t-1}^{(1)} \boldsymbol{W}_{hh}^{(1)} + \boldsymbol{b}_h^{(1)}), Ht(1)=ϕ(XtWxh(1)+Ht−1(1)Whh(1)+bh(1)),

其中权重 W x h ( 1 ) ∈ R d × h \boldsymbol{W}{xh}^{(1)} \in \mathbb{R}^{d \times h} Wxh(1)∈Rd×h、 W h h ( 1 ) ∈ R h × h \boldsymbol{W}{hh}^{(1)} \in \mathbb{R}^{h \times h} Whh(1)∈Rh×h和偏差 b h ( 1 ) ∈ R 1 × h \boldsymbol{b}_h^{(1)} \in \mathbb{R}^{1 \times h} bh(1)∈R1×h分别为第1隐藏层的模型参数。

当 1 < ℓ ≤ L 1 < \ell \leq L 1<ℓ≤L时,第 ℓ \ell ℓ隐藏层的隐藏状态的表达式为

H t ( ℓ ) = ϕ ( H t ( ℓ − 1 ) W x h ( ℓ ) + H t − 1 ( ℓ ) W h h ( ℓ ) + b h ( ℓ ) ) , \boldsymbol{H}t^{(\ell)} = \phi(\boldsymbol{H}t^{(\ell-1)} \boldsymbol{W}{xh}^{(\ell)} + \boldsymbol{H}{t-1}^{(\ell)} \boldsymbol{W}_{hh}^{(\ell)} + \boldsymbol{b}_h^{(\ell)}), Ht(ℓ)=ϕ(Ht(ℓ−1)Wxh(ℓ)+Ht−1(ℓ)Whh(ℓ)+bh(ℓ)),

其中权重 W x h ( ℓ ) ∈ R h × h \boldsymbol{W}{xh}^{(\ell)} \in \mathbb{R}^{h \times h} Wxh(ℓ)∈Rh×h、 W h h ( ℓ ) ∈ R h × h \boldsymbol{W}{hh}^{(\ell)} \in \mathbb{R}^{h \times h} Whh(ℓ)∈Rh×h和偏差 b h ( ℓ ) ∈ R 1 × h \boldsymbol{b}_h^{(\ell)} \in \mathbb{R}^{1 \times h} bh(ℓ)∈R1×h分别为第 ℓ \ell ℓ隐藏层的模型参数。

最终,输出层的输出只需基于第 L L L隐藏层的隐藏状态:

O t = H t ( L ) W h q + b q , \boldsymbol{O}_t = \boldsymbol{H}t^{(L)} \boldsymbol{W}{hq} + \boldsymbol{b}_q, Ot=Ht(L)Whq+bq,

其中权重 W h q ∈ R h × q \boldsymbol{W}_{hq} \in \mathbb{R}^{h \times q} Whq∈Rh×q和偏差 b q ∈ R 1 × q \boldsymbol{b}_q \in \mathbb{R}^{1 \times q} bq∈R1×q为输出层的模型参数。

同多层感知机一样,隐藏层个数 L L L和隐藏单元个数 h h h都是超参数。此外,如果将隐藏状态的计算换成门控循环单元或者长短期记忆的计算,我们可以得到深度门控循环神经网络。

小结

  • 在深度循环神经网络中,隐藏状态的信息不断传递至当前层的下一时间步和当前时间步的下一层。

注:本节与原书基本相同,原书传送门

相关推荐
Coder_Boy_35 分钟前
技术发展的核心规律是「加法打底,减法优化,重构平衡」
人工智能·spring boot·spring·重构
会飞的老朱3 小时前
医药集团数智化转型,智能综合管理平台激活集团管理新效能
大数据·人工智能·oa协同办公
聆风吟º4 小时前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
Codebee6 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º7 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys7 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56787 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子7 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能8 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144878 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能