数据仓库的主流分层架构

数据仓库的分层架构主要是为了更好地组织和管理数据,以及优化数据处理和分析的效率。一般来说,数据仓库可以分为以下几个层次:

源数据层(Source Layer):也称为ODS(Operational Data Store)层 ,是数据仓库的最底层,主要存储原始的业务数据。这些数据通常直接从各个业务系统中抽取,不经过任何清洗或转换。
数据仓库明细层(Data Warehouse Detail, DWD) :这一层主要存储明细数据,即对源数据层的数据进行清洗、转换和加载后的结果。数据仓库明细层的数据应该是一致的、准确的、干净的数据,即去除了杂质的数据。
数据仓库汇总层(Data Warehouse Summary, DWS) :这一层主要存储汇总数据,即对DWD层的数据进行进一步的聚合和汇总。数据仓库汇总层的数据可以支持更高级别的数据分析和报表生成。
应用层(Application Layer):也称为数据应用层(Data Application Layer),是数据仓库的最顶层。这一层的数据主要面向具体的业务应用,如报表、专题分析、数据挖掘等。应用层的数据可以来自DWD层或DWS层,根据具体业务需求进行选择和组合。

除了以上四个层次外,有些数据仓库还会包含一个临时层(Temporary Layer),用于存储一些中间的计算结果或临时数据。这些临时数据在计算完成后通常会被删除,以节省存储空间。

通过分层架构的设计,数据仓库可以更好地满足不同的业务需求,提高数据处理和分析的效率,同时也方便数据的维护和管理。

相关推荐
Query*17 小时前
分布式消息队列kafka【五】—— kafka海量日志收集实战
分布式·kafka
serendipity_hky19 小时前
【SpringCloud | 第5篇】Seata分布式事务
分布式·后端·spring·spring cloud·seata·openfeign
老蒋新思维19 小时前
创客匠人视角:智能体重构创始人 IP,知识变现从 “内容售卖” 到 “能力复制” 的革命
大数据·网络·人工智能·tcp/ip·创始人ip·创客匠人·知识变现
梦里不知身是客1120 小时前
RDD分区的设定规则
spark
笨蛋少年派20 小时前
Flume数据采集工具简介
大数据
梦里不知身是客1120 小时前
spark中如何调节Executor的堆外内存
大数据·javascript·spark
小C80621 小时前
【Starrocks + Hive 】BitMap + 物化视图 实战记录
大数据
lang201509281 天前
Kafka元数据缓存机制深度解析
分布式·缓存·kafka
西格电力科技1 天前
面向工业用户的绿电直连架构适配技术:高可靠与高弹性的双重设计
大数据·服务器·人工智能·架构·能源