数据仓库的主流分层架构

数据仓库的分层架构主要是为了更好地组织和管理数据,以及优化数据处理和分析的效率。一般来说,数据仓库可以分为以下几个层次:

源数据层(Source Layer):也称为ODS(Operational Data Store)层 ,是数据仓库的最底层,主要存储原始的业务数据。这些数据通常直接从各个业务系统中抽取,不经过任何清洗或转换。
数据仓库明细层(Data Warehouse Detail, DWD) :这一层主要存储明细数据,即对源数据层的数据进行清洗、转换和加载后的结果。数据仓库明细层的数据应该是一致的、准确的、干净的数据,即去除了杂质的数据。
数据仓库汇总层(Data Warehouse Summary, DWS) :这一层主要存储汇总数据,即对DWD层的数据进行进一步的聚合和汇总。数据仓库汇总层的数据可以支持更高级别的数据分析和报表生成。
应用层(Application Layer):也称为数据应用层(Data Application Layer),是数据仓库的最顶层。这一层的数据主要面向具体的业务应用,如报表、专题分析、数据挖掘等。应用层的数据可以来自DWD层或DWS层,根据具体业务需求进行选择和组合。

除了以上四个层次外,有些数据仓库还会包含一个临时层(Temporary Layer),用于存储一些中间的计算结果或临时数据。这些临时数据在计算完成后通常会被删除,以节省存储空间。

通过分层架构的设计,数据仓库可以更好地满足不同的业务需求,提高数据处理和分析的效率,同时也方便数据的维护和管理。

相关推荐
Hy行者勇哥2 小时前
公司全场景运营中 PPT 的类型、功能与作用详解
大数据·人工智能
liliangcsdn3 小时前
如何基于ElasticsearchRetriever构建RAG系统
大数据·elasticsearch·langchain
乐迪信息3 小时前
乐迪信息:基于AI算法的煤矿作业人员安全规范智能监测与预警系统
大数据·人工智能·算法·安全·视觉检测·推荐算法
极验3 小时前
iPhone17实体卡槽消失?eSIM 普及下的安全挑战与应对
大数据·运维·安全
失散133 小时前
分布式专题——39 RocketMQ客户端编程模型
java·分布式·架构·rocketmq
B站_计算机毕业设计之家4 小时前
推荐系统实战:python新能源汽车智能推荐(两种协同过滤+Django 全栈项目 源码)计算机专业✅
大数据·python·django·汽车·推荐系统·新能源·新能源汽车
The Sheep 20234 小时前
WPF自定义路由事件
大数据·hadoop·wpf
一个尚在学习的计算机小白4 小时前
RabbitMQ
分布式·rabbitmq
奥尔特星云大使5 小时前
MySQL分布式架构:MyCat详解
数据库·分布式·mysql·mycat·高可用
SelectDB技术团队5 小时前
Apache Doris 内部数据裁剪与过滤机制的实现原理 | Deep Dive
大数据·数据库·apache·数据库系统·数据裁剪