hive分区和分桶你熟悉吗?

两种用于优化查询性能的数据组织策略,数仓设计的关键概念,可提升Hive在读取大量数据时的性能。

1 分区(Partitioning)

根据表的某列的值来组织数据。每个分区对应一个特定值,并映射到HDFS的不同目录。

常用于经常查询的列,如日期、区域等。这样可以在查询时仅扫描相关的分区,而不是整个数据集,从而减少查询所需要处理的数据量,提高查询效率。

物理上将数据按照指定的列(分区键)值分散存放于不同的目录中,每个分区都作为表的一个子目录。

创建分区表

sql 复制代码
CREATE TABLE orders (
    order_id INT,
    order_date DATE,
    order_customer INT,
    order_total FLOAT
)
PARTITIONED BY (country STRING);

基于country列创建分区将使得每个国家的订单数据存储在不同的目录中。

2 分桶(Bucketing)

使用哈希函数将数据行分配到固定数量的存储桶(即文件)中。这在表内部进一步组织数据。

  • 对提高具有大量重复值的列(如用户ID)上JOIN操作的效率特别有用,因为它可以更有效地处理数据倾斜
  • 要求在创建表时指定分桶的列和分桶的数目

创建分桶表

sql 复制代码
CREATE TABLE user_activities (
    user_id INT,
    activity_date DATE,
    page_views INT
)
CLUSTERED BY (user_id) INTO 256 BUCKETS;

user_id是用于分桶的列,数据会根据用户ID的哈希值分配到256个存储桶中。

3 对比

  • 分区是基于列的值,将数据分散到不同的HDFS目录;分桶则基于哈希值,将数据均匀地分散到固定数量的文件中。
  • 分区通常用于减少扫描数据的量,特别适用于有高度选择性查询的场景;而分桶有助于优化数据的读写性能,特别是JOIN操作。
  • 分区可以动态添加新的分区,只需要导入具有新分区键值的数据;分桶的数量则在创建表时定义且不能更改。

使用分区时要注意避免过多分区会导致元数据膨胀,合理选择分区键,确保分布均匀;而分桶则通常针对具有高度重复值的列。两者结合使用时,可以进一步优化表的读写性能和查询效率。

关注我,紧跟本系列专栏文章,咱们下篇再续!

作者简介:魔都技术专家兼架构,多家大厂后端一线研发经验,各大技术社区头部专家博主。具有丰富的引领团队经验,深厚业务架构和解决方案的积累。

负责:

  • 中央/分销预订系统性能优化

  • 活动&优惠券等营销中台建设

  • 交易平台及数据中台等架构和开发设计

    目前主攻降低软件复杂性设计、构建高可用系统方向。

参考:

相关推荐
Moshow郑锴6 小时前
实战分享:用 SpringBoot-API-Scheduler 构建 API 监控闭环 —— 从断言验证到智能警报
java·spring boot·后端·任务调度
掘我的金6 小时前
播放器最怕“首帧黑屏”?我给 LibreTV 加了一套缓冲与预加载策略
java
低客的黑调6 小时前
为你的项目选择一个适合的[垃圾收集器]
java·jvm·算法
雨中飘荡的记忆6 小时前
优惠券系统设计与实现
java
1***t8276 小时前
将 vue3 项目打包后部署在 springboot 项目运行
java·spring boot·后端
芬加达6 小时前
leetcode34
java·数据结构·算法
__万波__6 小时前
二十三种设计模式(三)--抽象工厂模式
java·设计模式·抽象工厂模式
better_liang7 小时前
每日Java面试场景题知识点之-线程池配置与优化
java·性能优化·面试题·线程池·并发编程
q***2517 小时前
Windows操作系统部署Tomcat详细讲解
java·windows·tomcat
N***H4867 小时前
使用Springboot实现MQTT通信
java·spring boot·后端