基于决策树实现葡萄酒分类

基于决策树实现葡萄酒分类

将葡萄酒数据集拆分成训练集和测试集,搭建tree_1和tree_2两个决策树模型,tree_1使用信息增益作为特征选择指标,B树使用基尼指数作为特征选择指标,各自对训练集进行训练,然后分别对训练集和测试集进行预测。输出以下结果:

(1)tree_1(信息增益)在训练集上的准确率,在测试集上的准确率。

(2)tree_2(基尼指数)在训练集上的准确率,在测试集上的准确率。

源码

python 复制代码
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier

if __name__ == "__main__":
    print("2 基于决策树实现葡萄酒分类")
    print("李思强 20201107148")
    wine = load_wine()
    x_train,x_test,y_train,y_test = train_test_split(wine.data,wine.target)
    print("tree_1(信息增益)")
    tree_1 = DecisionTreeClassifier(criterion="entropy")
    tree_1.fit(x_train,y_train)
    train_score = tree_1.score(x_train,y_train)
    test_score = tree_1.score(x_test,y_test)

    print("训练集")
    print("准确率:", train_score)
    print("测试集")
    print("准确率:", test_score)
    print("tree_2(基尼指数)")
    tree_2 = DecisionTreeClassifier(criterion="gini")
    tree_2.fit(x_train,y_train)
    train_score = tree_2.score(x_train,y_train)
    test_score = tree_2.score(x_test,y_test)

    print("训练集:")
    print("准确率:", train_score)
    print("测试集")
    print("准确率:", test_score)

运行结果

相关推荐
贝多芬也爱敲代码2 小时前
如何减小ES和mysql的同步时间差
大数据·mysql·elasticsearch
异次元的星星3 小时前
智慧新零售时代:施易德系统平衡技术与人力,赋能门店运营
大数据·零售
深思慎考4 小时前
ElasticSearch与Kibana 入门指南(7.x版本)
大数据·elasticsearch·jenkins
银行数字化转型导师坚鹏5 小时前
如何设计优秀的企业微信私域运营实战培训方案
大数据·python·企业微信
悠闲蜗牛�5 小时前
人工智能时代下的全栈开发:整合AI、大数据与云原生的实践策略
大数据·人工智能·云原生
ml魔力信息7 小时前
活体检测与防伪技术的安全与隐私分析
大数据·人工智能·安全·隐私保护·生物识别·活体检测
数据要素X8 小时前
寻梦数据空间 | 架构篇:从概念到落地的技术实践与突破性创新
大数据·运维·数据仓库·微服务·数据治理·数据中台·可信数据空间
DP+GISer8 小时前
自己制作遥感深度学习数据集进行遥感深度学习地物分类-试读
人工智能·深度学习·分类
victory04318 小时前
TODO 分类任务指标计算和展示 准确率 F1 Recall
人工智能·机器学习·分类
rengang668 小时前
07-逻辑回归:分析用于分类问题的逻辑回归模型及其数学原理
人工智能·算法·机器学习·分类·逻辑回归