基于决策树实现葡萄酒分类

基于决策树实现葡萄酒分类

将葡萄酒数据集拆分成训练集和测试集,搭建tree_1和tree_2两个决策树模型,tree_1使用信息增益作为特征选择指标,B树使用基尼指数作为特征选择指标,各自对训练集进行训练,然后分别对训练集和测试集进行预测。输出以下结果:

(1)tree_1(信息增益)在训练集上的准确率,在测试集上的准确率。

(2)tree_2(基尼指数)在训练集上的准确率,在测试集上的准确率。

源码

python 复制代码
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier

if __name__ == "__main__":
    print("2 基于决策树实现葡萄酒分类")
    print("李思强 20201107148")
    wine = load_wine()
    x_train,x_test,y_train,y_test = train_test_split(wine.data,wine.target)
    print("tree_1(信息增益)")
    tree_1 = DecisionTreeClassifier(criterion="entropy")
    tree_1.fit(x_train,y_train)
    train_score = tree_1.score(x_train,y_train)
    test_score = tree_1.score(x_test,y_test)

    print("训练集")
    print("准确率:", train_score)
    print("测试集")
    print("准确率:", test_score)
    print("tree_2(基尼指数)")
    tree_2 = DecisionTreeClassifier(criterion="gini")
    tree_2.fit(x_train,y_train)
    train_score = tree_2.score(x_train,y_train)
    test_score = tree_2.score(x_test,y_test)

    print("训练集:")
    print("准确率:", train_score)
    print("测试集")
    print("准确率:", test_score)

运行结果

相关推荐
StarRocks_labs4 小时前
从InfluxDB到StarRocks:Grab实现Spark监控平台10倍性能提升
大数据·数据库·starrocks·分布式·spark·iris·物化视图
若兰幽竹5 小时前
【Spark分析HBase数据】Spark读取并分析HBase数据
大数据·spark·hbase
R²AIN SUITE6 小时前
金融合规革命:R²AIN SUITE 如何重塑银行业务智能
大数据·人工智能
绿算技术7 小时前
“强强联手,智启未来”凯创未来与绿算技术共筑高端智能家居及智能照明领域新生态
大数据·人工智能·智能家居
只因只因爆8 小时前
spark的缓存
大数据·缓存·spark
Leo.yuan8 小时前
3D 数据可视化系统是什么?具体应用在哪方面?
大数据·数据库·3d·信息可视化·数据分析
yzx9910139 小时前
使用SVM进行图像分类
机器学习·支持向量机·分类
只因只因爆9 小时前
spark小任务
大数据·分布式·spark
cainiao0806059 小时前
Java 大视界——Java 大数据在智慧交通智能停车诱导系统中的数据融合与实时更新
java·大数据·开发语言
End92812 小时前
Spark之搭建Yarn模式
大数据·分布式·spark