deeplearning with pytorch (四)

1.Convolutional Neural Network Model

torch.Tensor.view --- PyTorch 2.2 documentation

在神经网络中,使用激活函数(如ReLU)是为了引入非线性,使得网络能够学习和模拟复杂的函数映射。ReLU(Rectified Linear Unit)激活函数因其简单性和效率而广泛使用,特别是在隐藏层中。然而,在网络的最后一层使用激活函数的决策取决于特定任务的需求:

  1. 对于分类任务

    • 如果是多类分类问题,通常在最后一层使用softmax激活函数,因为softmax可以将输出转换为概率分布,每个类别的概率和为1。
    • 对于二分类问题,有时使用sigmoid激活函数将输出压缩到0和1之间,表示为概率。
  2. 对于回归任务

    • 最后一层通常不使用激活函数,因为我们希望预测连续值,而不是将其限制在特定的范围内(例如,ReLU将所有负值设为0,这对于回归任务可能不合适)

LogSoftmax --- PyTorch 2.2 documentation

2. Train and Test CNN Model

python 复制代码
import time
start_time = time.time()
# create varibles to track things
epochs = 5
train_losses = []
test_losses = []
train_correct = []
test_correct = []

# for loop of epochs
for i in range(epochs):
    trn_corr = 0
    tst_corr = 0


    #Train
    for b, (X_train, y_train) in enumerate(train_loader):
        b += 1 # start out batches at 1
        y_pred = model(X_train) # get predicted values from the training set,Not flattened;
        loss = criterion(y_pred, y_train) #how off we are,compare the predicitons to correct answer to y_train
        
        predicted =  torch.max(y_pred.data, 1)[1] # add up the number of correct predictions. indexed off the first point
        batch_corr = (predicted == y_train).sum() # how many we got correct from this batch
        trn_corr += batch_corr  # keep track as we go along in trainging
        
        #update out parameters
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()


        #print out some results
        if b%600 == 0:
            print(f'Epoch: {i} Batch: {b} Loss:{loss.item()}')

    train_losses.append(loss)
    train_correct.append(trn_corr)



    # Test
    with torch.no_grad(): #No gradient so we don't update our weight and biases with this test
        for b, (X_test, y_test) in enumerate(test_loader):
            y_val = model(X_test)
            predicted =  torch.max(y_val.data, 1)[1] # add up the number of correct predictions. indexed off the first point
            tst_corr += (predicted == y_test).sum()

    loss = criterion(y_val, y_test)
    test_losses.append(loss)
    test_correct.append(tst_corr)


current_time = time.time()
total = current_time - start_time
print(f'Training Took: {total/60} minutes!')

训练和测试过程

bash 复制代码
ConvolutonalNetaaaWork(
  (conv1): Conv2d(1, 6, kernel_size=(3, 3), stride=(1, 1))
  (conv2): Conv2d(6, 16, kernel_size=(3, 3), stride=(1, 1))
  (fc1): Linear(in_features=400, out_features=120, bias=True)
  (fc2): Linear(in_features=120, out_features=84, bias=True)
  (fc3): Linear(in_features=84, out_features=10, bias=True)
)
Epoch: 0 Batch: 600 Loss:0.16236098110675812
Epoch: 0 Batch: 1200 Loss:0.16147294640541077
Epoch: 0 Batch: 1800 Loss:0.46548572182655334
Epoch: 0 Batch: 2400 Loss:0.14589160680770874
Epoch: 0 Batch: 3000 Loss:0.006830060388892889
Epoch: 0 Batch: 3600 Loss:0.4129134714603424
Epoch: 0 Batch: 4200 Loss:0.004275710787624121
Epoch: 0 Batch: 4800 Loss:0.002969620516523719
Epoch: 0 Batch: 5400 Loss:0.04636438935995102
Epoch: 0 Batch: 6000 Loss:0.000430782965850085
Epoch: 1 Batch: 600 Loss:0.002715964335948229
Epoch: 1 Batch: 1200 Loss:0.17854242026805878
Epoch: 1 Batch: 1800 Loss:0.0020668990910053253
Epoch: 1 Batch: 2400 Loss:0.0038429438136518
Epoch: 1 Batch: 3000 Loss:0.03475978597998619
Epoch: 1 Batch: 3600 Loss:0.2954908013343811
Epoch: 1 Batch: 4200 Loss:0.02363143488764763
Epoch: 1 Batch: 4800 Loss:0.00022474219440482557
Epoch: 1 Batch: 5400 Loss:0.0005058477981947362
Epoch: 1 Batch: 6000 Loss:0.29113149642944336
Epoch: 2 Batch: 600 Loss:0.11854789406061172
Epoch: 2 Batch: 1200 Loss:0.003075268818065524
Epoch: 2 Batch: 1800 Loss:0.0007867529056966305
Epoch: 2 Batch: 2400 Loss:0.025718092918395996
Epoch: 2 Batch: 3000 Loss:0.020713506266474724
Epoch: 2 Batch: 3600 Loss:0.0005251148249953985
Epoch: 2 Batch: 4200 Loss:0.02623259648680687
Epoch: 2 Batch: 4800 Loss:0.0008421383099630475
Epoch: 2 Batch: 5400 Loss:0.12240316718816757
Epoch: 2 Batch: 6000 Loss:0.1951633244752884
Epoch: 3 Batch: 600 Loss:0.0012102334294468164
Epoch: 3 Batch: 1200 Loss:0.003382322611287236
Epoch: 3 Batch: 1800 Loss:0.002483583288267255
Epoch: 3 Batch: 2400 Loss:8.7084794358816e-05
Epoch: 3 Batch: 3000 Loss:0.0006959225866012275
Epoch: 3 Batch: 3600 Loss:0.0016453089192509651
Epoch: 3 Batch: 4200 Loss:0.04044409096240997
Epoch: 3 Batch: 4800 Loss:4.738060670206323e-05
Epoch: 3 Batch: 5400 Loss:0.1202053427696228
Epoch: 3 Batch: 6000 Loss:0.14659245312213898
Epoch: 4 Batch: 600 Loss:0.018919644877314568
Epoch: 4 Batch: 1200 Loss:0.07315998524427414
Epoch: 4 Batch: 1800 Loss:0.07178398221731186
Epoch: 4 Batch: 2400 Loss:0.0009470336954109371
Epoch: 4 Batch: 3000 Loss:0.0004728620406240225
Epoch: 4 Batch: 3600 Loss:0.24831190705299377
Epoch: 4 Batch: 4200 Loss:0.0003230355796404183
Epoch: 4 Batch: 4800 Loss:0.0002209811209468171
Epoch: 4 Batch: 5400 Loss:0.04399774223566055
Epoch: 4 Batch: 6000 Loss:0.00020674565166700631
Training Took: 1.3477467536926269 minutes!
相关推荐
用户12039112947267 小时前
打破信息壁垒:手把手教你实现DeepSeek大模型的天气查询功能
python·openai
受之以蒙8 小时前
具身智能的“任督二脉”:用 Rust ndarray 打通数据闭环的最后一公里
人工智能·笔记·rust
强盛小灵通专卖员8 小时前
Airsim仿真、无人机、Lidar深度相机、DDPG深度强化学习
人工智能·无人机·sci·研究生·ei会议·中文核心期刊·小论文
小oo呆8 小时前
【自然语言处理与大模型】BERTopic主题建模
人工智能·自然语言处理
2501_941225688 小时前
人工智能与自然语言处理技术在智能客服与用户体验优化中的创新应用研究
人工智能·自然语言处理·ux
万悉科技8 小时前
万悉科技GEO专题分享会——共探AI时代中国出海企业的流量新机遇
人工智能·科技
鱼骨不是鱼翅8 小时前
力扣hot100----1day
python·算法·leetcode·职场和发展
2501_941236218 小时前
使用PyTorch构建你的第一个神经网络
jvm·数据库·python
程序猿_极客8 小时前
【2025 最新】 Python 安装教程 以及 Pycharm 安装教程(超详细图文指南,附常见问题解决)
开发语言·python·pycharm·python安装以及配置
b***66618 小时前
Python 爬虫实战案例 - 获取社交平台事件热度并进行影响分析
开发语言·爬虫·python